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A B S T R A C T   

Digitalization is a driving force behind the ongoing energy industrial revolutions, catalyzing China’s pursuit of 
carbon neutrality and sustainable development. Leveraging provincial data and annual reports from energy 
enterprises in China, this study constructs a comprehensive analytical framework that encompasses benchmark 
regression models, mediating effect models, threshold models, and spatial econometric models. These models are 
utilized to investigate the multi-faceted impacts of energy digitalization on carbon productivity (CP). The aim is 
to furnish micro-level evidence and policy guidance for advancing energy transformation and fostering low- 
carbon development enriched with digital elements. This research employs natural language processing and 
machine learning techniques to compute an Energy Digitalization Index, examining two critical dimensions: 
digital industry investment and the inclination toward digital transformation. The following key findings emerge: 
firstly, energy digitalization (ED) exhibits a statistically significant ability to enhance regional CP, a phenomenon 
marked by temporal and regional variations. Secondly, the analysis confirms the transmission mechanisms 
associated with energy technology innovation, energy structure, and energy utilization efficiency, as revealed 
through the Logarithmic Mean Divisia Index (LMDI) decomposition method. Furthermore, the optimal effect of 
energy digitalization on low-carbon economies materializes in settings characterized by mature market condi
tions, modest environmental regulations, advanced digital infrastructure, and reduced resource dependency. 
Additionally, the spatial Markov chain analysis unveils a conspicuous spatial distribution pattern termed “club 
convergence” in regional CP, accompanied by a pronounced “Matthew effect.” According to the spatial Durbin 
model, energy digitalization generates favorable spatial spillover effects, primarily in peripheral regions, with a 
more pronounced short-term influence. Building upon these insights, this paper presents pertinent policy rec
ommendations encompassing the national “digital energy” strategy, regional differentiation policies, and ini
tiatives to stimulate digital technology innovation among enterprises. Our findings furnish robust empirical 
evidence and constructive policy insights, empowering governments to forge a smarter and cleaner energy 
ecosystem. Furthermore, these findings offer valuable guidance for other developing nations seeking to imple
ment effective digital strategies.   

1. Introduction 

The contemporary world confronts a myriad of global challenges 
encompassing economic stagnation, energy security concerns, and the 
ever-pressing climate crisis [1]. The Sustainable Development Goals 
(SDGs) of the United Nations have long beckoned nations to establish 
accessible, dependable, and sustainable modern energy sources (SDG7 - 
Affordable and Clean Energy) while simultaneously urging immediate 
action to combat climate change (SDG13 - Climate Action). In this 

context, the low-carbon economy stands as a pivotal approach to 
harmonize socioeconomic growth, ensure energy security, and confront 
climate change—a consensus embraced by nations across the globe [2]. 
Among these nations, China, recognized as the world’s largest energy 
consumer and carbon emitter, has set its sights on achieving carbon 
neutrality by 2060, which necessitates a comprehensive and profound 
economic transformation. Significantly, the energy sector, the most 
significant contributor to carbon emissions and a linchpin of the national 
economy, has emerged as the epicenter of efforts to catalyze a 
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low-carbon economy [3]. Nevertheless, numerous obstacles persist 
within China’s energy industry, including mounting environmental 
resource constraints, imbalances in energy structures, and the persis
tence of low-level energy technologies—challenges that collectively 
amplify the complexity of carbon reduction efforts [4]. 

In the era of the digital economy, digitalization has demonstrated 
significant potential for carbon reduction by promoting the optimization 
of industrial structures, facilitating technological innovation, and 
reducing energy intensity. As the latent power of digitalization con
tinues to be harnessed, various actors at macro, meso, and micro levels 
have embarked on the journey of digitalization. Notably, industrial 
digitalization has emerged as an inexorable trend within the current 
wave of technological revolution and industrial reform [5]. China’s 
“14th Five-Year Plan for Digital Economy Development” and “14th 
Five-Year Plan for Modern Energy System” both underscore the pivotal 
role of digitalization in the energy sector, positioning it as the “sixth 
energy” following the “fifth energy - energy conservation” [6]. Energy 
digitalization is heralded as a profound industrial revolution, with data 
as its core production factor, digital technology as the primary driver, 
and digital transformation as its new vehicle [7]. From the perspective 
of sustainable energy development, scholars have substantiated that the 
application of digital technology in the energy sector can mitigate en
ergy poverty [8], bolster energy security [9], resolve the conundrum of 
the energy triangle [10], and propel energy transformation [11]. 
Conversely, the convergence of digital technology and the energy in
dustry has proven instrumental in stimulating economic growth, thereby 
enhancing energy efficiency [12], fostering technological innovation 
[13], and fortifying corporate resilience [14]. Undoubtedly, energy 
digitalization (ED) holds the potential to become an indispensable 
catalyst for advancing the energy sector and modernizing the industrial 
supply chain. It represents a novel driving force in realizing China’s 
blueprint for “carbon neutrality.” Nonetheless, prevailing research often 
treats “digital” as an external factor in the energy industry’s develop
ment, predominantly focusing on the influence of digital technology or 
the digital economy on the energy sector. This approach fails to seam
lessly integrate the digital realm with the energy industry, leading to a 
limited emphasis on the concept of energy digitalization, let alone its 
quantification. Simultaneously, research concerning the low-carbon 
impacts of digital transformation is primarily confined to mechanistic 
analyses and lacks the identification of multi-dimensional influence 
effects. 

In this paper, we employ economic growth theory and digital econ
omy theory to elucidate the intricate relationship between ED and car
bon productivity (CP). To accommodate the availability of data and the 
regional disparities within China, we have selected Chinese inter- 
provincial panel data spanning from 2012 to 2021 as our research 
sample for empirical analysis. The pertinent data have been sourced 
from regional statistical yearbooks and enterprise annual reports, 
renowned for their credibility and authoritative nature. In our research 
methodology, we judiciously employ targeted econometric models to 
discern the impact of different dimensions. Firstly, we scrutinize the 
direct influence of ED on regional CP through fixed-effect models and 
instrumental variable methods. Secondly, we explore the intermediary 
mechanisms through which ED influences CP, focusing on three key 
aspects: energy technology innovation, energy structure optimization, 
and enhancements in energy utilization efficiency. Thirdly, we unveil 
multiple threshold effects contingent on external factors such as mar
ketization, environmental regulations, digital infrastructure, and 
resource dependency. Finally, we delve into both short-term and long- 
term spatial spillover effects using the Spatial Durbin Model (SDM). 

This paper makes significant contributions to previous studies in four 
key aspects. Firstly, it firmly recognizes the crucial role of the energy 
industry in driving low-carbon development. To our knowledge, this 
study is the first to investigate the impact of energy digitalization on CP 
within the Chinese context. In measurement, we adopt an innovative 
approach employing natural language processing and machine learning 

techniques to estimate the ED index, focusing on two dimensions: digital 
industry investment and the willingness to embrace digital trans
formation. This pioneering method provides a fresh perspective on 
quantifying digitalization within this specialized field. Secondly, we 
enrich the existing body of knowledge by subdividing the transmission 
mechanism of digitalization’s impact on CP into three distinct facets: 
energy technology, energy structure, and energy utilization efficiency, 
building upon the Logarithmic Mean Divisia Index (LMDI) decomposi
tion method. This innovative approach goes beyond conventional in
terpretations and broadens the theoretical foundation of “digital carbon 
reduction.” Thirdly, instead of solely concentrating on establishing a 
linear relationship between ED and CP, we meticulously consider the 
heterogeneity of the external environment, encompassing market dy
namics, governmental policies, infrastructure conditions, and resource 
dependencies. This comprehensive exploration of potential heteroge
neous correlations between ED and CP can serve as a blueprint for 
environmental restructuring, thereby maximizing the positive impact of 
ED. Fourthly, we employ the Spatial Markov Chain model to elucidate 
the spatiotemporal dynamics of CP. By integrating spatial and temporal 
dimensions, we effectively capture the influence of ED on CP in external 
regions. This approach both complements and extends prior static in
vestigations. Consequently, we propose a series of policy recommen
dations aimed at harnessing digital opportunities and actively 
promoting low-carbon development at the national, regional, and en
terprise levels. Our fresh insights into the transmission mechanisms 
provide a novel focal point for policy formulation. The analysis of 
threshold effects helps delineate the relative disadvantages of regional 
external environments, facilitating the implementation of dynamic dif
ferentiation policies to maximize the low-carbon impact of digital 
transformation. The revelation of spatial spillover effects in digital 
carbon reduction promotes regional collaborative initiatives. Addition
ally, our novel finding that short-term spatial effects are more pro
nounced accelerates the pace of regional digital transformation peer 
groups. In conclusion, this paper furnishes compelling evidence 
regarding the carbon reduction potential of digital energy, contributing 
to China’s “dual carbon” strategy and offering valuable insights for 
resource-based and developing countries embarking on energy digital 
transformation initiatives. 

The remainder of this article is structured as follows: The subsequent 
section conducts a comprehensive review of the literature pertaining to 
ED, economic development, and carbon emissions. Section 3 delineates 
the theoretical analysis and establishes research hypotheses. In the 
fourth section, we introduce the econometric models and core variables. 
Subsequently, Section 5 delves into the empirical results, while the 
concluding section presents our findings and policy recommendations, 
discusses limitations, and outlines future research directions. 

2. Literature review 

2.1. Research on digitalization and economic development 

In the era of digitalization, scholarly attention has progressively 
shifted from the macroeconomic development of the digital economy to 
the micro-level digitalization of various subjects. Digitalization repre
sents an advanced culmination of communication, information tech
nology, and internet advancements [15]. Within academic discourse, 
digitalization has been defined from diverse perspectives, encompassing 
aspects like business models [16], technological transformations [17], 
and intelligent manufacturing [18]. While the concept of digitalization 
may not enjoy universal consensus across academic circles, there is a 
broad consensus regarding its fundamental components. Firstly, digi
talization fundamentally reshapes the operational activities of micro
enterprises by applying modern information technology [19]. Secondly, 
digitalization strongly emphasizes achieving value co-creation, ensuring 
economies can secure competitive advantages and sustain growth 
within highly competitive markets [20]. Thirdly, the overarching 
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objective of digitalization lies in elevating the ecological stature of in
dustrial economies [21]. 

Contemporary scholarly focus centers on the economic ramifications 
of digitalization, with research falling into three distinct categories: ① 
Micro Level Impact: Scholars have argued that digitalization integrates 
data elements into traditional production systems, ushering in “creative 
changes” in production organizational structures and the real economy’s 
factor systems, significantly contributing to enterprise productivity 
[22]. Quantitative methods such as fixed effects models, generalized 
least squares estimation methods (FGLS), and Blinder-Oaxaca decom
position have been employed to affirm the positive impact of digitali
zation on productivity in various regions, including South Africa [23], 
China [24], and Spain [25]. Furthermore, scholars have uncovered the 
spatial impact of digitization on productivity [26] and explored the 
nonlinear relationship between these two factors [27]. ② Meso Level 
Impact: At the meso level, many scholars underscore the pivotal role of 
digital technology in shaping industrial structural adjustments [28]. In 
the collaborative development of digital industrialization and industrial 
digitalization, digital technology consistently propels industrial trans
formation and upgrading [29]. It is noteworthy that heterogeneity may 
exist in this regard [30]. For instance, Fu [31] and Kan et al. [32] con
ducted studies on manufacturing and service industries, respectively, 
revealing that digitalization significantly impacts capital-intensive in
dustries more than technology-intensive ones. ③ Macro Level Impact: At 
the macro level, the digital economy exerts a substantial influence on 
economic development, primarily due to its substantial contribution to 
the scale of the traditional economy [33]. According to Cai and Niu [34], 
the added value of the digital economy in China witnessed an average 
annual growth of 17.72% between 1993 and 2018, becoming a 
cornerstone of China’s economic development. Zhang et al. [35] have 
demonstrated that the positive economic growth impact of digitalization 
is realized by supporting industrial structure upgrades, increasing total 
employment, and reshaping employment structures. 

2.2. Research on digitalization and carbon emission 

Within the academic sphere, discussions regarding the influencing 
factors of carbon emissions have been extensive and typically encompass 
macro-environmental aspects, including financial development [36], 
trade activities [37], foreign investment [38], energy-related aspects 
like energy rent [39] and energy structure [40], as well as technological 
innovation aspects such as patent support [41] and green innovation 
[42]. In recent years, with the proliferation of the digital age, an 
increasing body of research has emerged concerning the environmental 
effects of digitalization. These studies are categorized into three primary 
perspectives: inhibition theory, promotion theory, and nonlinear theory. 
①① Inhibition Theory: This perspective posits that digitalization can 
foster low-carbon innovation and optimize resource allocation, yielding 
positive substitution effects on carbon emissions. This view finds sup
port among prominent researchers [43,44]. Additionally, spatial 
econometric models have been employed to confirm this perspective in 
spatial geography [45,46]. In terms of the transmission mechanism, 
relevant studies have primarily engaged in qualitative discussions and 
quantitative examinations within the realms of promoting technological 
innovation [47], optimizing industrial structures [48], and enhancing 
resource allocation efficiency [49]. ②② Promotion Theory: This 
perspective argues that digitalization may counteract carbon emission 
reduction, offering three essential explanations. Firstly, digitalization 
often relies on numerous electronic devices and accessories, which 
possess a higher energy demand throughout their lifecycle, conse
quently amplifying carbon emissions [50]. Secondly, the “cost effect” of 
digitalization suggests that the widespread use of ICTs leads to dimin
ished marginal costs, reducing the cost of information while elevating 
the cost of products and services, thereby diverting funds away from 
carbon reduction efforts and accelerating carbon emissions [51]. 
Thirdly, the “energy rebound effect” of digitalization entails that energy 

efficiency and productivity improvements incentivize the industrial 
sector to increase production and consume more energy, ultimately 
leading to greater pollution. ③③ Nonlinear Theory: According to this 
perspective, the relationship between digitalization and carbon emis
sions is not fixed. Specifically, when the quadratic term of digital 
transformation is introduced, it exhibits a distinct parabolic pattern [52, 
53]. After incorporating spatial factors, Li and Wang [54] confirmed the 
inverted “U"-shaped relationship between the two variables, while 
Cheng et al. [55] arrived at a contrary conclusion. Moreover, some re
searchers have unveiled a more intricate connection between the two by 
constructing panel threshold models. For instance, when digitalization 
serves as the threshold variable, Hao et al. [56] determined that the 
influence of digitalization on carbon emissions assumes an inverted 
“N-type” shape. Conversely, when the threshold variable is energy ef
ficiency, Zhang et al. [57] identified an “N-type” relationship. 

2.3. Research on energy digitalization 

A comprehensive and authoritative analysis of energy digitalization 
has yet to crystallize within academia. Scholars have delved into the 
subject from various perspectives, including organizational digitaliza
tion, management digitalization, process digitalization, and product 
digitalization within energy enterprises and energy systems. Qualita
tively, Semeraro et al. [58] employed a literature research method to 
assess the current digitalization status in energy storage, evaluating 
aspects such as application environment, life cycle stage, digital twin 
functionality, and digital twin architecture. Polyanska et al. [59] 
devised a model grounded in fuzzy set theory to gauge the digitalization 
maturity of Ukrainian energy companies, encompassing dimensions like 
strategy, human resources, organizational culture, technology, struc
ture, and marketing, laying the groundwork for energy digitalization. 
Quantitatively, Park et al. [60] employed an informal academic text 
analysis coupled with the signal model to investigate the trajectory of 
ED. Wang et al. [61] established an evaluation index framework for 
energy digitalization, spanning four dimensions: integration basis, 
integration conditions, integration applications, and integration per
formance. Their findings revealed that China’s energy digitalization 
level has progressively increased, albeit with notable regional dispar
ities. Theoretical explorations underscore the pivotal role of energy 
digitalization in enhancing energy efficiency [11], driving technological 
innovation [62], and fortifying enterprise resilience [9]. Notably, it is 
poised to emerge as a new catalyst propelling economic entities to tra
verse the Environmental Kuznets Curve (EKC) [63,64]. 

While existing studies offer promising insights, they exhibit some 
noteworthy shortcomings. Firstly, most researchers have primarily 
explored the impact of digitalization on economic development and 
carbon emissions without considering that China’s economic growth 
and carbon emissions are not entirely decoupled. This limitation results 
in an insufficient exploration of the intricate relationship between 
digitalization and developing a low-carbon economy. Secondly, despite 
the energy industry’s central role in China’s national economy and its 
significant contribution to carbon emissions, existing research pre
dominantly focuses on the digitalization of the manufacturing sector, 
overlooking the specific nuances of energy digitalization. Thirdly, there 
remains ample room for further investigation into the effects of digita
lization. Specifically, examining influencing mechanisms tends to be 
somewhat rigid, and heterogeneity analyses often fail to fully encompass 
external environmental adjustments, and spatial effects frequently lack 
temporal factor decomposition. Lastly, there is a pressing need for re
finements in calculating the degree of ED. Presently, digitalization 
measurement predominantly adopts a regional perspective, leading to a 
dearth of precise measurements concerning the digitalization of partic
ular industries. 

This paper aims to bridge the gaps in the research mentioned above 
by adopting innovative approaches. We leverage text mining technology 
with word frequency statistics to evaluate the extent of energy 

Z. Shi et al.                                                                                                                                                                                                                                       



Energy Strategy Reviews 52 (2024) 101347

4

digitalization. Simultaneously, we employ targeted econometric models 
to explore the multifaceted impacts of energy digitalization on CP. These 
models include the intermediary effect model, the threshold regression 
model, and the SDM. 

3. Theoretical analysis and research hypothesis 

3.1. Direct effect of ED on CP 

There is unanimous consensus that Energy Digitalization represents a 
systematic revolution within the energy sector, facilitating the 
advancement of high-quality energy development through the deep 
integration of digital technology and the energy industry. In light of 
pertinent research, we undertake an analysis of the fundamental essence 
of ED. We contend that the essence of ED lies in the innovative inte
gration of information technology, operational technology, and elec
trical technology. Throughout this process, it orchestrates the orderly 
flow of information, energy, and resources, culminating in a production 
factor structure intricately intertwined with data and energy. Concur
rently, ED empowers traditional production processes, management 
methodologies, and business models with data-centric elements, giving 
rise to novel networked production methods and platform-driven in
dustrial organizational forms. It thereby reconstructs the nodes and logic 
governing the creation and transfer of value within energy enterprises. 
Ultimately, this transformation optimizes the efficiency of production, 
operation, and maintenance across the entire energy industry chain. 
Building upon this foundation, this paper asserts that ED can directly 
influence CP from three pivotal perspectives: factor structure, industrial 
organization, and technological advancement. 

Viewed through the lens of factor structure, digitalization catalyzes a 
transformative reconstruction of traditional factor structures, resulting 
in profound changes to the energy industry’s production methods and 
elevating Green Total Factor Productivity. The data factor, characterized 
by its non-competitive and non-exclusive nature, has undeniably 
assumed a pivotal role as a production factor within the digital economy 
landscape. This development reinforces the conditions for escalating 
returns to scale and expands the horizons of conventional economic 
growth theory [65]. Facilitated by the permeability, substitutability, and 
synergy inherent in digital technology, data elements can exert multiple 
effects on energy components, including superposition, aggregation, and 
multiplier effects. Consequently, Energy Digitalization restructures the 
composition of traditional factors and optimizes resource allocation, 
thereby facilitating the creation of new economic, social, and environ
mental values. Moreover, digitalization revamps the production chain, 
which is evident in the significant enhancements in operational effi
ciency across the production process. This encompasses resource 
extraction, production decision-making, equipment operation, product 
processing, and electricity transportation, consequently diminishing 
reliance on traditional production modes reliant on natural resources 
and mitigating environmental pollution [66]. 

From the perspective of industrial organization, digitization carries 
the potential to dismantle industrial boundaries and reconfigure tradi
tional industrial organizational structures, thereby expediting CP. 
Building on the insights of Xiao and Qi [67], digitalization can dismantle 
the “information islands” among various entities within the industrial 
value chain. This significantly diminishes transaction costs, weakens 
industrial boundaries, and deepens the structure of industrial organi
zation, nurturing an interconnected ecological community character
ized by cohesion. Digitalization gives rise to a decentralized, networked 
industrial ecosystem encompassing all facets of the energy industry, 
thereby dismantling spatial and temporal limitations. This augmenta
tion strengthens the synergistic impact of subdivided industries, elevates 
the operational efficiency of energy systems, and paves the way for 
progressive, streamlined, and low-carbon energy industry development 
[68]. 

From the vantage point of technological progress, digitalization 

underpins the transition of both the economy and society towards 
digitization, intellectualization, and low-carbonization facilitated by 
cutting-edge digital technologies. On the one hand, digital, operational, 
and electrical technology convergence engenders novel energy devel
opment models and business paradigms, such as comprehensive intel
ligent energy services and virtual power plants. The fusion of watt-flow 
and bit-flow propels the shift from the traditional linear production 
chain model to a networked collaborative parallel mode [69]. This 
transition empowers the energy sector to optimize resource allocation 
and enhance CP. On the other hand, digital technologies are intricately 
interwoven with the energy production cycle, encompassing generation, 
transmission, distribution, storage, and utilization. Through mecha
nisms like carbon footprint monitoring, carbon data analysis, and 
carbon-neutral deductions, digitalization offers substantial advantages 
for bolstering the green transformation of production, consumption, and 
end-user governance [70]. This, in turn, mitigates carbon emissions 
without compromising economic output. Consequently, this paper posits 
Hypothesis 1. 

Hypothesis 1. ED can directly promote CP. 

3.2. Indirect effect of ED on CP 

When energy is included in the endogenous economic growth model, 
the Cobb-Douglas production function for the final production sector 
can be expressed as Y = A • Ka • Lb • Ec. Here, A is technological prog
ress, K、L and E refer to the capital, labor, and energy, and a、b and c 
indicate the share of each factor, respectively. Meanwhile, the emission 
of carbon dioxide C can be described as the product of carbon emission 
coefficient τ and fossil energy consumption Ef : C = τ • Ef [71]. Accord
ing to the LMDI model, CP is split into three parts: YC = Y

τ•Ef
= Y

E ×
E
Ef
×

Ef
C =

eff × estru× etech. Where YC indicates carbon productivity, eff represents 

energy utilization efficiency, estru refers to the energy structure, Ef
C = τ− 1 

relies on the energy technology progress etech. Based on the above 
decomposition, this paper will analyze the influence mechanisms of ED 
affecting CP through energy technology, energy structure, and energy 
utilization efficiency. 

3.2.1. The mediating role of energy technology innovation 
Li et al. [72] noted that energy technology innovation seeks to 

develop new energy sources while simultaneously promoting the con
servation and purification of fossil energy. Numerous studies have 
underscored the role of energy technology innovation in reducing 
pollution and enhancing CP [73,74]. Within this study, we contend that 
the unique advantages of digitalization within the platform ecosystem 
can foster a conducive ecological environment for energy technology 
innovation. Equipped with a robust innovation-oriented function, digi
talization continuously elevates the caliber of energy technology inno
vation, expediting CP. To begin with, the advantages of digitalization in 
information collection, matching, and analysis can transcend temporal 
and spatial limitations on disseminating non-material resource elements 
such as information and knowledge. Reducing information tracking 
costs and mitigating information asymmetry provide the foundational 
prerequisites for energy technology innovation [75]. Secondly, digita
lization amplifies the competitive market dynamics for energy enter
prises. Drawing from signal theory, the exigent external environment 
fosters competition among energy firms striving for “green and smart 
energy.” This competition serves as a stimulus for the output of energy 
technology innovation [44] and propels the adoption of green technol
ogy, thereby driving CP to a certain extent. Lastly, the network platform 
attributes inherent in digitalization facilitate the establishment of an 
innovation cooperation network among the energy industry, research 
institutions, and universities and cultivate an innovation ecosystem 
spanning production, consumption, and government sectors. This link
age between innovation output and application enhances the 
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sustainability and relevance of energy technology innovation. 

3.2.2. The mediating role of energy structure 
Renewable energy sources are widely recognized for their environ

mental friendliness and low carbon footprint. The transition towards a 
cleaner energy structure dominated by renewable sources holds the 
potential to mitigate the adverse environmental externalities associated 
with fossil fuels and generate substantial positive externalities. This 
transition reduces carbon intensity and fosters CP [76]. The broad 
technological advancements and innovations associated with digitali
zation play a pivotal role in dismantling the barriers within the new 
energy industry, thereby expediting the shift towards a cleaner energy 
structure and enhancing CP [77]. On the supply side, integrating digital 
technology with new energy technologies optimizes various facets of the 
new energy sector, including construction, operations and maintenance, 
power generation, and energy storage. This optimization contributes to 
the sustainability, stability, and predictability of new energy generation 
[78], thereby propelling the growth of new energy. For instance, digital 
technologies enable the aggregation of distributed energy sources like 
wind and photovoltaic power into virtual power plants, facilitating 
multi-energy complementarity and flexible distribution. On the demand 
side, integrating digital technology within New Energy Vehicles (NEVs) 
has given rise to multiple functions such as intelligent driving, 
networking, and sharing. These functions enhance user convenience, 
efficiency, and safety, resulting in heightened consumer demand and 
expanding the application scale of new energy sources. Regarding the 
alignment of supply and demand, the fusion of artificial intelligence 
technology and algorithmic models enables efficient management and 
precise matching of energy supply from generation to demand. This 
addresses the consumption and storage challenges associated with 
renewable energy, thereby expediting the transition from traditional 
power generation to new energy generation [79]. 

3.2.3. The mediating role of energy utilization efficiency 
Energy utilization efficiency is paramount to achieving CP with 

maximum economic benefits and minimal energy consumption [80]. 
Digitalization gives rise to an energy interconnection paradigm under
pinned by platforms and driven by intelligence, optimizing energy ef
ficiency across the entire spectrum, from power generation to electricity 
consumption. On the one hand, Energy Digitalization amalgamates 
electricity technology with digital technology, sparking a new era of 
managing energy at the terawatt level. This breakthrough bridges the 
gap between each node in the “power generation - transmission - dis
tribution - storage – utilization” process, ushering in digitalization and 
intellectualization of the entire energy chain. Consequently, this im
proves the efficiency of power generation, operation, maintenance, and 
utilization. 

On the other hand, ED transitions from supply-oriented large-scale 
production to user-driven customized production. This shift signifi
cantly enhances the efficiency of supply-demand matching, leading to 
energy-saving effects [81] and a notable improvement in energy utili
zation efficiency. In light of these considerations, we posit the following 
assumption. 

3.3. Threshold effect of ED on CP 

Metcalfe’s Law suggests a potential nonlinear relationship between 
Energy Digitalization and regional CP [82]. In essence, the impact of 
digitalization may exhibit variations among provinces, particularly 
given China’s marked regional disparities in development. With this 
perspective in mind, we aim to comprehensively examine the external 
factors shaping digitalization, encompassing the regulatory roles played 
by the market, government, and digital infrastructure. 

3.3.1. The regulatory role of market adjustment 
Marketization is recognized as a pivotal external institutional factor 

acting as a “catalyst” for the low-carbon economy effect of Energy 
Digitalization [83]. This effect is multifaceted. Firstly, a more mature 
factor market facilitates the seamless integration, synergy, and evolution 
of data factors with traditional factors. This expedites the process of 
capitalizing on data and unlocks the dividends of data factors [65]. 
Consequently, the energy sector becomes intricately entwined with the 
digital economy, amplifying the low-carbon economy effect of ED. 
Secondly, a heightened emphasis on product marketing often coexists 
with a more competitive external business landscape. This competitive 
pressure not only compels enterprises to engage in technological inno
vation but also stimulates the efficient allocation of resources driven by 
profit motives. Consequently, the digitalization process accelerates, 
enhancing green productivity. However, it is imperative to acknowledge 
that economies with less market-based systems may experience imma
ture market mechanisms. This imbalance between government regula
tion and market adjustments can impede the flow of production 
materials, hinder the adoption of digital technologies, and disrupt 
market competition [84]. Consequently, this limitation can curtail the 
beneficial impact of ED on CP. 

3.3.2. The regulatory role of environmental regulation 
The concept of the weak Porter hypothesis posits that moderate 

environmental regulation can foster innovation revolutions. In cases 
where regional environmental regulation strikes an appropriate balance, 
it can give rise to what is known as an “innovation compensation effect” 
[85]. This effect stimulates innovation in low-carbon and digital tech
nologies, propelling digitalization and low-carbon transformation 
within the energy industry, consequently positively impacting CP. 
However, overly stringent environmental regulations can lead to what is 
termed an “innovation extrusion effect” [86]. Such regulations increase 
the cost of pollutant emissions, thereby tightening the financial con
straints on digitalization. This hindrance impedes the adoption and 
dissemination of digital technologies within the energy sector, limiting 
the full potential of Energy Digitalization to enhance CP. 

3.3.3. The regulatory role of digital infrastructure 
Digital infrastructure can be likened to fertile “soil” for digitalization 

[11]. It represents the convergence of cutting-edge Information and 
Communication Technology (ICT) with traditional infrastructure, giving 
rise to various digital platforms for businesses and government opera
tions. This synthesis combines the conventional infrastructure’s public 
service attributes with the data-driven qualities of digitization, intelli
gence, and networking. Regions with advanced digital infrastructure, 
including technologies such as 5G networks, cloud computing platforms, 
and artificial intelligence, boast a robust array of intelligent tools and 
technological resources. This fosters the efficient flow of information 
and resources within these areas, enabling a profound penetration of 
digital technology into the energy sector. Consequently, ED exerts a 
more pronounced impact on CP in these regions. In contrast, regions 
lacking adequate digital infrastructure cannot provide a conducive 
technical environment for digitalization [87]. This limitation diminishes 
the influence of ED on CP within these areas. 

3.3.4. The regulatory role of resource dependence 
In line with the resource curse hypothesis, regions with high resource 

dependence tend to be dominated by resource exploitation and pro
cessing industries characterized by high energy consumption and 
pollution [88]. Over time, these areas often develop a rigid and exten
sive economic model, making transitioning toward an improved CP 
challenging. Moreover, the persistence of natural resources in 
resource-based regions can crowd out high-end factors such as tech
nology and human capital [89], hampering regional disruptive inno
vation and digital transformation efforts, thereby making it difficult to 
demonstrate the carbon reduction effect of digital transformation. 
Conversely, regions with low resource dependence experience more 
significant constraints related to resource endowments in their 
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economic development models. This implies greater flexibility in the 
flow of factors and changes in industrial structure, ultimately facilitating 
a more positive impact of digital transformation on CP. Consequently, 
we propose Hypothesis 3. 

Hypothesis 3. The impact of ED on CP is regulated by the market, 
government, digital infrastructure, and resource dependence. The pos
itive effect is more remarkable under a higher marketization degree, 
moderate environmental regulation level, advanced digital technology 
facilities, and weaker resource dependence. 

3.4. Spatial effect of ED on CP 

As a result of the sharing and permeability of digital technology, 
critical resources like technology and knowledge have been freed from 
geographical constraints and industry-specific barriers, leading to the 
superposition effect of “mobile space” and “mobile industry.” Conse
quently, it is anticipated that the positive impacts of ED on the low- 
carbon economy will extend beyond individual regions. Scholars have 
previously explored the spatial effects of digitalization on both carbon 
emissions and economic outcomes separately [54,90]. This paper posits 
that ED can benefit CP in neighboring regions through two mechanisms: 
interregional low-carbon technology spillover and the strategic coordi
nation of digital transformation. On the one hand, following Marshall’s 
theory of externalities and Romer’s model of knowledge spillover 
growth [91], it is understood that technology possesses externalities and 
can spill over to neighboring regions. Through digital technology, ED 
can potentially empower low-carbon technology innovation in 
geographically adjacent areas by expediting the flow of innovation 
factors across time, thereby laying the technical groundwork for 
collaborative CP improvement. 

On the other hand, as energy companies within a region increasingly 
adopt ED practices, they may serve as a source of demonstration and 
peer effects for energy firms in neighboring regions, inspired by the 
positive feedback related to environmental and economic performance 
[92]. Driven by information dissemination, competitive emulation, and 
value internalization, energy enterprises in nearby regions are likely to 
implement their digital strategies, ultimately highlighting the 
low-carbon economic benefits of digitalization. Consequently, we pro
pose the final hypothesis. 

Hypothesis 4. ED can exert a beneficial effect on CP in external 
regions. 

To sum up, Fig. 1 presents the diagram of the theoretical model, and 
Fig. 2 displays the diagram of the theoretical framework in this paper. 

4. Methodology 

4.1. Model construction 

Constructing appropriate models is crucial to test the four hypothe
ses outlined earlier empirically. Based on relevant literature, we have 
chosen specific models to examine the multidimensional impact of en
ergy digitalization on CP. The literature-based rationale for our model 
selection is summarized in Table 1. We observe that in the field of 
research on digitalization, the low-carbon economy, and green devel
opment, scholars have focused on various aspects, including direct ef
fects, indirect effects, nonlinear effects, and spatial effects. Regarding 
direct effects, applying the two-way fixed effects model is predominant, 
with some scholars employing IV-2SLS and GMM to address endogeneity 
concerns. Accordingly, this paper constructs a fixed effect model com
bined with the instrumental variable method to test the direct effect 
proposed in H1. 

Regarding indirect effects, existing research utilizes mediating effect 
models based on two-stage or three-stage regression methods. These 
mediating variables encompass industrial structure, technological 
innovation, and energy intensity. Therefore, we adopt a three-stage 
stepwise regression-based mediating effect model to rigorously assess 
the indirect effect posited in H2, supported by mathematical evidence. 
Furthermore, it is evident that previous research primarily employs 
threshold panel models to investigate nonlinear effects. These models 
operate on the idea that when a specific economic parameter reaches a 
certain threshold, another economic parameter undergoes a structural 
break. The critical value for this transition is termed the threshold value. 
As such, we employ a threshold regression model to examine the 
nonlinear effect postulated in H3. To evaluate spatial effects outlined in 
H4, we construct a spatial econometric model, as widely applied by most 
scholars in the field. This model introduces a spatial weight matrix and 
spatial correlation coefficient, allowing us to determine the elasticity 
coefficients of variables within geographical space. 

Fig. 1. The diagram of the theoretical model.  

Z. Shi et al.                                                                                                                                                                                                                                       



Energy Strategy Reviews 52 (2024) 101347

7

4.1.1. Benchmark model 
This article integrates energy digitalization into the research 

framework of CP to test hypothesis 1 and establishes baseline models 
using pooled ordinary least squares (POLS), random effects (RE), and 
fixed effects (FE). The equation is as follows: 

cpit = α0 + α1enerdigit + α2fdiit + α3sizeit + α4cityit + α5insit + α6transit + λi

+ εit

(1)  

Where them, cpit is considered as the explained variable, presenting the 
carbon productivity of region i during the period of t, enerdigit expresses 
the degree of energy digitalization. Control variables cover foreign 
direct investment fdiit, the scale of industrial enterprise sizeit, the level of 
urbanization cityit, industrial structure insit and the level of trans
portation infrastructure transit. In addition, α0 is the intercept term, αn is 
the parameter to be estimated, λi refers to the unknown individual ef

fects and εit indicates the random error. 

4.1.2. Mediation effect model 
To examine hypothesis 2, mediation effect models are further con

structed. Following the approach outlined by Wen and Ye [99], a 
three-step regression model is developed as the benchmark. 

mediationit = β0 + β1enerdigit + βnXit + λi + εit (2)  

cpit =ω0 + ω1enerdigit + ω2mediationit + ωnXit + λi + εit (3)  

Where, mediationit is selected as energy technology innovation 
(enerinno), energy structure optimization (enerstru), energy utilization 
efficiency (enereffi); β0 and ω0 are intercept terms; β1 and ω1 indicate the 
parameters to be estimated; βn and ωn refer to the parameter vectors to 
be estimated. Xit contains a variable group formed by a series of control 
variables in Formula (1). The other parameters are the same as above. 

Fig. 2. The diagram of the theoretical framework.  
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4.1.3. Threshold regressive model 
To provide evidence for Hypothesis 3, we construct the threshold 

regression model proposed by Hansen [100]. In the model, marketiza
tion (market), environmental regulation (regulation), digital infrastruc
ture (diginfra), and resource dependence (ependence) are taken as 
heterogeneous variables. The econometric model is established as 
follows: 

cpit = θ0 + θ1enerdigit × I(thresholdit ≤ η)
+ θ2enerdigit × I(thresholdit > η)+ θnXit + εit

(4)  

Where θ0 is the intercept term; θ1 and θ2 indicate the parameters to be 
estimated; θn refers to the parameter vectors to be estimated; thresholdit 
is the threshold variable set in this paper; η is the value of the single 
threshold. I(•) represents the indicator function. The other parameters 
are the same as above. 

4.1.4. Spatial econometric model 
Regarding hypothesis 4, we introduce the SDM, and the formulation 

is as follows [101]: 

cpit = γ0 + ρW × lcdit + γ1enerdigit + ξ1W × enerdigit + γnXit + ξnW × Xit

+ μit

(5)  

Where γ0 is the intercept term, ρ represents the spatial autoregressive 
coefficient, γ1 and ξ1 indicate the parameters to be estimated; γn and ξn 
refer to the parameter vectors to be estimated. W represents the spatial 
weight matrix. Since neither geographical distance nor economic dis
tance alone can fully depict the genuine dependency relationship of 
spatial units, this paper adopts the spatial weight matrix of economic 

geographic distance regarding Yang et al. [102]. W × lcdit and W ×

enerdigit Two different interaction effects in spatial metrology are rep
resented: the endogenous interaction effect and the exogenous interac
tion effect. The other parameters are as previously described. 

4.2. Variable selection 

4.2.1. Dependent variable 
Carbon productivity (cp). Some scholars use the carbon emission 

index as a proxy variable for low-carbon development, while others 
create complex index systems to measure it. However, the former 
approach overlooks the non-decoupling relationship between carbon 
emissions and economic benefits at the current technological level, and 
the latter can lead to conflicting results due to the diversity and 
complexity of index selection. In essence, developing a low-carbon 
economy revolves around improving CP [103]. Therefore, this paper 
aims to construct a multidimensional input-output index system to 
measure regional CP from an efficiency perspective. To address the 
“slack” or “crowding” of input elements, this paper employs the 
Super-SBM-DDF model, which can measure unexpected output related 
to environmental pollution. We create an output-oriented Malmquis
t-Luenberger productivity index using MAX DEA Pro software, assuming 
constant returns to scale. The following input and output indicators have 
been selected based on the practices of Han et al. [62], as shown in 
Table 2. 

4.2.2. Key independent variable 
Energy digitalization (enerdig). Some are crucial aspects of this study. 

Various scholars have adopted different approaches to measure digita
lization levels in industries and regions. Some have constructed multi
dimensional indexes considering digitalization input, application, and 

Table 1 
Literature basis for model building.  

Topic Effects Type Sample Model Variables 

Digitalization and carbon emissions 
[52] 

Direct effect 
Indirect 
effect 

30 provinces in China from 2006 to 
2019 

Fixed effect model +
IV-2SLS 
Mediating effect model 

Intermediate variable： 
Energy structure, 
Industry structure, technology innovation 

Digital economy and carbon emission 
[54] 

Indirect 
effect 
Spatial effect 

274 prefecture-level cities and above 
in China from 2011 to 2018 

Spatial Durbin model 
Mediating effect model 

Intermediate variable： 
Energy use, green technology progress, industrial 
structural upgrade 

Digital economy and carbon emission 
[93] 

Direct effect 
Indirect 
effect 

60 countries from 2008 to 2019 Double fixed effects 
model + GMM 
Mediating effects 
model 

Intermediate variable： 
Economic growth, industrial structure, financial 
development 

Digitalization and total factor carbon 
performance [94] 

Direct effect 
Indirect 
effect 

274 prefecture-level cities and above 
in China from 2003 to 2019 

Double fixed effects 
model 
Single step regression 

Intermediate variable： 
Industrial structure, green technological 
innovation, energy efficiency 

Digitalization and carbon emissions 
[95] 

Direct effect 55 countries from 1996 to 2019 Fixed effects model +
OLS 

– 

digital finance and green development 
[96] 

Direct effect 
Indirect 
effect 
Threshold 
effect 

238 prefecture-level cities in China 
from 2012 to 2021 

Fixed effect model 
Mediation effect model 
Threshold regression 
model 

Intermediate variable： green technology 
innovation 
Threshold variable： digital finance 

Digitalization and green development 
[47] 

Direct effect 
Indirect 
effect 
Spatial effect 
Threshold 
effect 

278 cities in China from 2011 to 2019 Fixed effect model 
Mediating effect model 
Spatial Durbin model 
Threshold panel model 

Intermediate variable： economic openness, 
industrial structure, market potential 
Threshold variable： economic openness, 
industrial structure, market potential 

Digital economy and sustainable 
development [97] 

Direct effect 
Indirect 
effect 
Threshold 
effect 

286 cities in China from 2011 to 2019 Fixed effect model +
IV-2SLS 
Mediating effect model 
Threshold panel model 

Intermediate variable： green technological 
innovation, human capital 
Threshold variable： environmental regulation 

Digital transformation and total factor 
carbon productivity [62] 

Direct effect 
Threshold 
effect 

30 provinces in China from 2009 tp 
2019 

Fixed effect model 
Threshold regression 
model 

Threshold variable: 
Technological innovation 

Trade fdi and CO2 emissions [98] Spatial effect 
Threshold 

18 Latin American countries from 
1970 to 2019 

Spatial Durbin model, –  
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output, while others have focused on measuring regional digitalization 
based on internet development and digital technology indicators. 
Additionally, some researchers have employed text analysis of corporate 
annual reports to estimate the level of digital transformation among 
micro-level entities. However, these measurement methods have their 
limitations. Firstly, the strong permeability of digital technology makes 
it challenging to assess the degree of digitalization in a specific industry 
accurately. Secondly, the level of digitalization extends beyond just the 
development of digital technologies [104]. Furthermore, methods that 
rely on text word frequency analysis can only represent the intention 
and actions of enterprises in their digital transformation efforts, failing 
to capture the overall digital scale of an industry. 

We believe that energy digitalization goes beyond merely the digi
talization of the energy industry or the widespread use of digital tech
nology in a region. It involves creating a green and efficient energy 
system through the coordinated development of digitalization in the 
energy industry and digital industrialization. Achieving this goal ne
cessitates substantial digital investment support from the industry and 
proactive digital strategy guidance from enterprises. Based on this un
derstanding, we adopt the approach of “digital industry investment 
support - digital transformation strategic guidance” to construct the 
Energy Industry Digital Transformation Index (ED) as follows: 

enerdigit = diginputit × digstrategyit (6)  

Where diginputit refers to the digital input in the energy industry, rep
resented by the relative consumption coefficient of digital input in the 
energy industry, as shown in the provincial 42 Departmental input- 
output tables [105]. Compared to the direct consumption coefficient, 
the relative consumption coefficient better reflects the importance of the 
target intermediate input in the production process of a specific in
dustry. Below is the calculation formula. 

ajk =
xjk

xj
(7)  

ajd =
xjd

xj
, d ∈ k (8)  

bjd =
ajd

∑42

k=1
ajk

(9)  

Where ajk is the direct consumption coefficient of the energy industry j to 
the intermediate sector k, xjk indicates the actual consumption of in
termediate sector k in the production process of the energy industry and 
xj represents the total output of the energy industry. Similarly, the paper 
constructs the direct consumption coefficient of the energy industry to 
the digital industry sector d. According to the “Statistical Classification 
of Digital Economy and Its Core Industries (2022)", digital industries 
include electrical machinery and equipment, communication equip
ment, computers, and other electronic equipment, as well as information 
transmission, software, and information technology services. The ratio 
of ajd to the sum of the direct consumption coefficients of all sectors is 
obtained as the target value. 

Additionally, digstrategyit in formula (6) represents the propensity of 
micro-level entities towards digital transformation. Drawing from the 
methodology employed by Zhang et al. [13], this study conducts a 

quantitative analysis of word frequencies related to “digitalization” 
within the annual reports of energy enterprises. The data processing 
involves a four-dimensional approach encompassing securities code, 
word frequency, province, and year to ascertain the extent of energy 
digitalization across different provinces. The specific procedure is 
delineated into five steps: ① Screening of Energy Enterprises: Distinct 
from sectors like manufacturing and finance, the energy industry lacks a 
precise delineation, and statistical data regarding energy enterprises in 
China is fragmented. Consequently, drawing insights from prior 
research [61,106], we adopt a comprehensive approach to identify 
publicly listed energy enterprises based on industry classifications 
within both the national economic framework and the Wind Financial 
Terminal database. This approach ensures the inclusion of the entire 
energy industry spectrum, encompassing upstream energy extraction, 
midstream energy chemicals, and downstream commercial consump
tion, thereby facilitating a more thorough estimation of the degree of 
energy digitalization. ② Mining of Enterprise Annual Reports: 
Leveraging machine learning techniques, this study extracts text content 
from the annual reports of energy companies spanning from 2012 to 
2021. The extraction process is conducted using Python programming. 
③ Construction of the Lexicon “Energy Digitalization”: Building upon 
prior research endeavors [92,107], this study establishes a lexicon 
relevant to energy digitalization. The lexicon comprises two primary 
dimensions: the technology base and application practice layers. The 
technology base layer encompasses phrases such as artificial intelligence 
technology, big data technology, cloud computing technology, and 
blockchain technology. In contrast, the application practice layer in
corporates phrases such as intelligent energy, virtual power grid, energy 
Internet, smart power grid, and distributed energy. ④ Matching the 
Lexicon with Annual Report Texts: To quantify the degree of energy 
digitalization within the annual reports, the text content is meticulously 
matched against the predefined lexicon. This matching process is facil
itated using the Jieba dictionary in the Python programming language, 
thereby generating word frequency counts related to energy digitaliza
tion. ⑤ Calculation of Regional ED Degree: By incorporating securities 
code, word frequency, province, and year as critical variables, this study 
derives aggregated summaries of word frequencies and the total number 
of energy enterprises within each geographical region. Subsequently, 
the regional ED degree is computed by applying a logarithmic trans
formation to the word frequency per unit enterprise. 

4.2.3. Mechanism variables 
① Energy technology innovation (enerinno). This category encom

passes innovations related to both fossil energy enhancement and 
renewable energy development, as observed in prior research [108, 
109]. Building on the methodology employed by Li et al. [72], this study 
employs the number of patent applications for both types of energy 
technology as a comprehensive proxy for enerinno. 

② Energy structure optimization (enerstru). The 14th Five-Year Plan 
for Modern Energy has outlined an ambitious target for China, aiming to 
achieve a non-fossil energy contribution of approximately 39% in power 
generation by 2025. The enhancement of clean energy consumption and 
its electricity generation plays a fundamental role in achieving this en
ergy structure optimization goal [110]. While no authoritative data 
regarding clean energy consumption in China exists, this study, in line 
with the approach adopted by Destek and Aslan [111], employs the 
proportion of non-fossil energy generation as an indicator to charac
terize energy structure optimization. 

③ Energy utilization efficiency (enereffi). Measuring the economic 
benefits of each energy consumption unit, energy utilization efficiency is 
commonly represented by GDP per unit of energy consumption [43, 
112]. 

4.2.4. Threshold variables 
① Marketization (market). The regional external institutional envi

ronment is characterized using the marketization indicator developed 

Table 2 
The input and output indicators.  

Variable Indicator Calculation 

Input Human capital Quantity of employment 
Physical capital Fixed asset investment 
Energy input Total energy consumption 

Desired output Economic benefit Real GDP 
Undesired output Carbon dioxide emission CEADs  

Z. Shi et al.                                                                                                                                                                                                                                       



Energy Strategy Reviews 52 (2024) 101347

10

by Fan et al. [113]. This indicator encompasses five key dimensions: the 
development of a non-state-owned economy, the government-market 
relationship, product market conditions, intermediary organizations, 
and factor market characteristics. Additionally, necessary adjustments 
have been made to the marketization index to ensure data comparability 
across the period from 2012 to 2021 [114]. 

② Environmental regulation (regulation). Regulatory efforts are 
quantified by the ratio of completed investment in industrial pollution 
control to the secondary industry’s added value, following the approach 
proposed by Zhang et al. [103]. 

③ Digital infrastructure (diginfra). The digital infrastructure is 
assessed based on a comprehensive indicator system, incorporating el
ements such as Internet penetration (the proportion of Internet users in 
the resident population), telephone penetration (total number of tele
phones/Total population of administrative area × 100), length of long- 
distance cable lines, the number of Internet domain names, and broad
band access IoT ports, as adopted by Pan et al. [115] and Chen [92]. The 
digital infrastructure index is ultimately calculated using the entropy 
method. The steps of the entropy method are as follows:  

a Standardization of indicators Zim. 

Z+
im =

zim − min (z1m, z2m,…, z30m)

max(z1m, z2m,…, z30m) − min (z1m, z2m,…, z30m)
(10)  

Z−
im =

max(z1m, z2m,…, z30m) − zim

max(z1m, z2m,…, z30m) − min (z1m, z2m,…, z30m)
(11)  

In order to avoid the unbalanced distribution caused by excessive dif
ference in index values, the data are standardized. In the above formula, 
Z+

im and Z−
im respectively refer to the positive and negative indicators 

after standardized processing, zim represents the original value of indi
cator m of province i. m represents the five secondary indicators of 
digital infrastructure.  

b The measure of information entropy Em. 

Em = ln
1
n
∑30

i=1

⎛

⎜
⎜
⎝

Zim

∑30

i=1
Zim

• ln
Zim

∑30

i=1
Zim

⎞

⎟
⎟
⎠ (12) 

Information entropy reflects the different information content of the 
same index, which can effectively avoid the influence of subjective 
factors in weight setting.  

c Calculation of indicator weights Pm. 

Pm =
(1 − Em)

∑5

j=1
(1 − Em)

(13) 

According to the information entropy of each index, its weight is 
calculated.  

d Calculation of the composite index diginfra. 

diginfra=
∑5

m=1
Pm • Zim (14) 

Based on the standardized value Zim of each indicator and the weight 
Pm of each indicator, the multi-objective linear weighting function 
method is used to calculate the digital infrastructure level (diginfra) at 
the provincial level from 2012 to 2021. 

④ Resource dependence (dependence). Resource dependence is 
gauged by the ratio of employment in the regional extractive industry to 
that in the manufacturing industry. 

4.2.5. Control variables 
In addition to energy digitalization, several internal and external 

factors can influence CP. Building upon existing research [116–118], we 
incorporate a series of control variables to account for these factors. 
These variables include ①Foreign direct investment (fdi). fdi can impact 
CP through pollution transition and knowledge spillover effects. We 
measure it using the proportion of foreign direct investment to GDP; 
②Industrial enterprise size (size). The size of industrial enterprises is 
closely linked to their operational and production efficiency, potentially 
influencing CP. It is calculated as the share of industrial output value 
relative to the number of regional enterprises; ③Urbanization (city). The 
urbanization process often involves population migration, factor 
agglomeration, and urban infrastructure development, which can affect 
economic growth and environmental pollution. We use the percentage 
of the urban permanent population to quantify urbanization; ④Indus
trial structure (ins). The industrial layout and structure are crucial in 
determining the economic growth mode and can impact CP. We measure 
it as the ratio of tertiary industry output to secondary industry output; 
⑤Transportation infrastructure (trans). Trans has a dual impact on CP. 

On the one hand, it can enhance regional transportation conditions, 
facilitating the flow of resources and boosting low-carbon innovation 
and production efficiency. On the other hand, it may increase automo
bile exhaust emissions and fossil energy consumption. We estimate this 
variable using the ratio of total highway mileage to the total population. 

In summary, the measurement and indicator sources of relevant 
variables in this paper are shown in Table 3. 

4.3. Data source and descriptive statistics 

We have selected 30 mainland Chinese provinces as the subjects of 
our study and collected panel data spanning from 2012 to 2021. Our 
data sources encompass regional CO2 emissions data from CEADs 
(Carbon Emission Accounts & Datasets), which provide a more 
comprehensive view of regional carbon emissions by accounting for 
emissions from energy combustion and production processes, covering 
47 economic sectors, the combustion of 17 fossil fuels, and cement 
production [119]. We have also gathered data on energy technology 
innovation from the Shanghai Intellectual Property (Patent) Public 
Service Platform, as outlined in Li et al. [72]. Non-fossil energy gener
ation data were sourced from the China Electric Power Statistical 
Yearbook, while energy consumption data were compiled based on the 
China Energy Statistical Yearbook. Marketization index data were 
calculated and adjusted comparably using China’s Marketization Index 
Report by Province (2021) [120]. Additionally, we included other data 
primarily obtained from the China Regional Economic Database and EPS 
global statistics. Furthermore, we have confirmed no multicollinearity 
issue among the variables, and specific descriptive information can be 
found in Table 4. 

Fig. 3 presents geographical heat maps illustrating the mean regional 
values of low-carbon economy development and energy digitalization 
throughout the sample period. Darker colors indicate higher values. The 
distribution of regional low-carbon economy development exhibits 
noticeable spatial clustering rather than a uniform pattern. Provinces 
such as Beijing, Guangdong, Jiangsu, Fujian, Zhejiang, and Sichuan 
demonstrate relatively favorable low-carbon economic development, 
while Xinjiang, Qinghai, Gansu, Ningxia, and Inner Mongolia have 
lower values. Beijing’s commendable performance in low-carbon eco
nomic development is noteworthy. In recent years, Beijing has consis
tently emphasized carbon governance through policy and technological 
advancements, achieving impressive results and establishing itself as a 
leading province in China’s low-carbon economic development. 
Regarding regional energy digitalization, eastern China displays the 
darkest colors, indicating a high level of digitalization, while central 
China exhibits lighter colors. The eastern region’s rapid digital industry 
growth, solid digital technology foundation, and advanced digital 
infrastructure contribute to its higher level of digitalization. In contrast, 
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western regions, although not technologically advanced, face significant 
pressure regarding new energy distribution and power generation. This 
pressure drives the extensive integration of digital technology and new 

energy power generation, improving digitalization levels to some extent. 
Notably, Shanxi, a province rich in coal resources, demonstrates a low 
degree of digitalization. This observation underscores the challenges the 
fossil energy industry faces in achieving digitalization, which involves 
constraints related to technological progress and economic development 
that require careful consideration. 

5. Empirical results and discussion 

5.1. Results of direct effects 

5.1.1. Baseline regression analysis 
As shown in Table 5, the methods of POLS, RE, and FE are used in this 

study to estimate the low-carbon economy effects of ED. Among them, 

Table 3 
Variable declaration.  

Type Variable Measurement Source 

Dependent 
variable 

Carbon productivity (cp) Malmquist-Luenberger productivity index China Regional Statistical Yearbook 
China Energy Statistical Yearbook 
CEADS 

Key independent 
variable 

Energy digitalization (enerdig) enerdigit = diginputit × digstrategyit Departmental input-output table 
Corporate annual report 

Digital input in the energy industry 
(diginput) 

Relative consumption coefficient Provincial 42 departments input-output table 
(Published at the National Bureau of Statistics) 

Willingness of micro-entities for digital 
transformation (digstrategy) 

Word frequency statistics based on natural language 
processing 

M&A text in annual reports of listed energy 
companies (Reptile technique by Python) 

Mechanism 
variables 

Energy technology innovation 
(enerinno) 

The number of patent applications for “non-fossil energy” 
and “energy conservation and emission reduction" 

Shanghai Intellectual Property (patent) public 
service platform 

Energy structure optimization (enerstru) The proportion of renewable energy generation China Electric Power Statistical Yearbook 
Energy utilization efficiency (enereffi) GDP/Energy consumption China Regional Statistical Yearbook 

China Energy Statistical Yearbook 
Threshold 

variables 
Marketization (market) Marketization index Fan et al. [113] 
Environmental regulation (regulation) Completed investment in industrial pollution control/ 

added value of secondary industry 
China Regional Statistical Yearbook 

Digital infrastructure (diginfra) Entropy method China Electronic Information Industry Statistical 
Yearbook 
EPS global statistics 

Resource dependence (dependence) Employment in extractive industries/employment in 
industry 

EPS global statistics 

Control variables Foreign direct investment (fdi) foreign direct investment/GDP EPS global statistics 
Industrial enterprise size (size) industrial output value/the number of regional enterprises China Regional Economic Database 
Urbanization (city) urban permanent population/total population China Regional Economic Database 
Industrial structure (ins) the tertiary industry output/the secondary industry output China Regional Economic Database 
Transportation infrastructure (trans) total highway mileage/total population China Regional Economic Database  

Table 4 
The descriptive statistics of variables.  

Variable Obs Mean Std. Dev. Min Max 

cp 300 0.853 0.235 0.578 2.549 
enerdig 300 2.692 0.816 0.251 4.382 
fdi 300 1.638 1.473 0.039 9.142 
size 300 0.990 0.343 0.411 2.118 
city 300 0.582 0.121 0.350 0.896 
ins 300 1.218 0.691 0.518 5.169 
trans 300 0.027 0.020 0.003 0.104  

Fig. 3. Distribution maps of the acp (average value of CP) (a) and aenerdig (average value energy digitalization) (b).  
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columns (1), (3), and (5) only contain the core explanatory variable ED, 
while columns (2), (4), and (6) include all the control variables. All 
results show positive impact coefficients between core variables, vali
dating hypothesis 1; that is, ED can promote the CP directly. Addition
ally, when control variables are included, the model’s goodness of fit 
increases significantly, manifesting the rationality of variable screening. 
Further, according to the Hausman test, we will focus on the column (6). 
Regional CP will increase by 0.112 units for every ED unit increase. 
From a micro perspective, ED reconstructs the structure of traditional 
production factors and production links with data elements and triggers 
the intensive transformation of production mode, thus improving green 
productivity. From a meso perspective, ED reshapes the industrial or
ganization forms through the networked platform and forms a widely 
interconnected ecological community, thus promoting the clean devel
opment of the energy industry. From a macro perspective, ED realizes 
carbon monitoring and feedback of all links of the energy value chain 
through integrating digital technology, operation technology, and 
electricity technology, thus boosting the economy’s and society’s 
intelligent and green development. Moreover, regarding variables, for 
every unit increase in the size of industrial enterprises, regional low- 
carbon economic development will increase by 0.768 units. Schum
peter’s innovation theory [121] has emphasized that firm size is pro
portional to innovation. We suspect that although large enterprises will 
produce more pollution due to large-scale production, they have a 
greater advantage of low-carbon economic contribution supported by 
advanced technological innovations in emission reduction. The indus
trial structure can spur CP with a coefficient of 0.654, which is signifi
cant at the 5% level. Similar to Zhao et al.’s findings [122], the advanced 
development of industrial structure contributes to eliminating 
energy-intensive industries, optimizing the energy consumption struc
ture, and stimulating green technology innovation, thereby promoting 
CP. 

5.1.2. Endogenous analysis 
Previous studies have suggested that low-carbon development can 

stimulate digitalization [92]. Therefore, it is essential to consider the 
possibility of reverse causality between ED and CP. Additionally, given 
the multitude of factors influencing CP, there may be missing variables, 
and the empirical results may be subject to unobservable factors. To 
address these concerns, we employ the instrumental variable method for 
model estimation. 

We initiate the analysis by conducting the robust Durbin-Wu- 
Hausman (DWH) test to examine the endogeneity of the model. The 
test results yield a statistic value of 32.798, with a corresponding P-value 

of 0.000, indicating the presence of an endogeneity issue in the ED. We 
select two instrumental variables in light of two critical conditions for 
instrumental variables—correlation with endogenous variables but no 
correlation with random disturbance terms. ① The degree of topo
graphic relief iv1 [43]: Regional topographic relief can impact the 
installation of digital equipment and the transmission of digital infor
mation, but it does not hadirectly affect CP. ② An interaction term be
tween the number of post offices per million people in 1984 and the lag 
term of industrial robot installation density iv2 [123]: The number of 
post offices is historically linked to Internet penetration rates and 
communication technology development. However, with technological 
advancements, the role of post offices in modern society has diminished. 
By multiplying this variable by industrial robot installation density, we 
enhance its relevance to digitalization. It is important to note that the lag 
term of industrial robot installation density has a weak correlation with 
the current CP. The first two columns in Table 6 present the estimation 
results of the two-stage least squares (2SLS) method. According to the 
first-stage results, both iv1 and iv2 significantly enhance the level of ED, 
confirming their strong relationship with the endogenous variable. In 
the second-stage regression, the coefficient of enerdig is significantly 
positive, providing compelling evidence for hypothesis 1. Furthermore, 
the Cragg-Donald Wald statistic yields a value of 30.851, surpassing the 
10% critical value of 19.930, affirming the effectiveness of instrumental 
variable selection. 

Considering the serial correlations of CP, we introduce its lag term L.
cp and apply GMM) to account for potential unobservable factors and 
minimize model estimation bias. The last two columns in Table 6 present 
the results of the system GMM model and the differential GMM. Both the 
AR and the Hansen test results validate the appropriateness of GMM. It is 
noteworthy that, even after addressing the endogeneity issue, ED con
tinues to exhibit a significant positive impact on CP, reinforcing the 
robustness of our findings for hypothesis 1. 

5.1.3. Heterogeneity analysis  

(1) Analysis of regional heterogeneity 

Based on the division of geographical regions in China, this study 
conducted a sub-sample heterogeneity test on four major regions of 
China. The results, presented in Table 7, indicate that only in the eastern 
and northeast regions does ED significantly impact CP. Notably, the low- 
carbon economic effect of ED is most pronounced in the eastern region, 
which aligns with the findings of Yi et al. [123]. This outcome can be 
attributed to the eastern region’s more advanced digital technologies 

Table 5 
Results of baseline regression.  

Variable (1) (2) (3) (4) (5) (6) 

POLS POLS RE RE FE FE 

enerdig 0.407*** 0.106*** 0.320*** 0.104*** 0.317*** 0.112** 
(0.052) (0.020) (0.081) (0.039) (0.081) (0.051) 

fdi  0.138***  0.057  0.010  
(0.042)  (0.050)  (0.041) 

size  − 0.275***  0.571**  0.768**  
(0.033)  (0.258)  (0.282) 

city  0.407**  0.616  1.086  
(0.161)  (1.429)  (1.460) 

ins  0.698***  0.607**  0.654**  
(0.069)  (0.290)  (0.295) 

trans  − 0.134  − 2.975  − 14.160  
(0.594)  (6.282)  (11.070) 

constant − 0.242 − 0.470*** − 0.001 − 1.102*** − 0.000 − 1.265** 
(0.134) (0.117) (0.136) (0.386) (0.219) (0.489) 

N 300 300 300 300 300 300 
R2 0.204 0.666 0.349 0.612 0.349 0.630 

Note: The significance levels of 0.10, 0.05, and 0.01 are represented by *, **, and ***, respectively. The statistics in parentheses refer to standard errors. The same as 
below. 
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and superior digital infrastructure conditions, which facilitate the 
demonstration of the low-carbon economic effect of ED. In contrast, 
despite having a higher carbon emission level due to coal burning, the 
northeast region experiences a more evident effect of ED on carbon 
reduction compared to the central and western regions. Given their 
current economic development and digital technology levels, this un
derscores the potential for high-energy consumption areas to contribute 
to carbon peak and carbon neutrality efforts.  

(2) Analysis of time heterogeneity 

Based on the division of geographical regions in China, this study 
conducted a sub-sample heterogeneity test on four major regions of 
China. The results, presented in Table 8, indicate that only in the eastern 
and northeast regions does ED significantly impact CP. Notably, the low- 
carbon economic effect of ED is most pronounced in the eastern region, 
which aligns with the findings of Yi et al. [123]. This outcome can be 
attributed to the eastern region’s more advanced digital technologies 

and superior digital infrastructure conditions, which facilitate the 
demonstration of the low-carbon economic effect of ED. In contrast, 
despite having a higher carbon emission level due to coal burning, the 
northeast region experiences a more evident effect of ED on carbon 
reduction compared to the central and western regions. This underscores 
the potential for high-energy consumption areas to contribute to carbon 
peak and carbon neutrality efforts, given their current economic 
development and digital technology levels. 

5.2. Results of indirect effects 

Table 9 presents the intermediary mechanisms through which ED 
influences CP. Specifically, the first two columns employ a three-step 
regression, utilizing energy technology innovation (enerinno) as the 
intermediary variable. The results reveal that the impact coefficient of 
ED on energy technology innovation is 0.137, which not only passes the 
significance test with a p-value of 0.99 but also demonstrates statistical 
significance. Furthermore, the elasticity coefficient of energy technology 
innovation on CP is 0.263. Consequently, we can calculate that the in
direct impact of ED on CP amounts to 0.036 (0.137 × 0.263), repre
senting a substantial 32.171% of the total effect. Moving on to the 
middle two columns, we explore the results when energy structure 
optimization (enerstru) serves as the intermediary variable. Despite the 
critical coefficients in the stepwise regression being non-significant, it is 
vital to acknowledge the potential existence of a mediating effect, as 
emphasized by Wen and Ye [99]. To validate this, we conducted Sobel 
and Bootstrap tests, which yielded p-values of 0.000, indicating a partial 
mediating effect of clean energy structure transition. This effect amounts 
to 4.557% of the total impact. In the final set of columns (5) and (6), we 
present the results of a three-step regression with energy utilization ef
ficiency (enereff) as the intermediary variable. These findings demon
strate that ED can indirectly influence CP through energy technology, 
energy structure, and energy utilization efficiency. This comprehensive 
support strongly validates hypothesis 2. In summary, our analysis in
dicates that ED has a dual impact: a direct effect on CP and multiple 
indirect effects mediated by crucial economic indicators. These findings 
underscore the complex nature of the relationship between ED and CP. 

5.3. Results of threshold effects 

Table 10 reveals the findings from the threshold effect analysis. Upon 
examining the p-values, it becomes evident that all four threshold var
iables exhibit a single threshold effect without encountering a situation 
of double thresholds. This observation further validates the first part of 
hypothesis 3 in this study. For a clearer perspective, when the market
ization level, environmental regulation intensity, digital infrastructure 

Table 6 
Results of instrumental variable regression and GMM regression.  

Variable (1) (2) (3) （4) 

First stage 
of 2SLS 

Second stage 
of 2SLS 

System- 
GMM 

Differential- 
GMM 

enerdig  0.630*** 0.015* 0.097***  
(0.111) (0.008) (0.035) 

iv1 0.258**    
(0.054)    

Iv2 0.173***    
(0.036)    

L. CP   1.107*** 0.736***   
(0.011) (0.063) 

constant − 0.787* − 1.483*** − 0.044**  
(0.426) (0.291) (0.018)  

Control variables Yes Yes Yes Yes 
Time-fixed effect control control control control 
Individual-fixed 

effect 
control control control control 

P value of DWH 
test  

0.000   

F value of Cragg- 
Donald Wald  

30.851   

P value of 
Hansen test  

0.100 0.879 0.515 

P value of AR (1) 
test   

0.009 0.003 

P value of AR (2) 
test   

0.734 0.265 

N 300 300 270 240  

Table 7 
Results of regional heterogeneity test.  

Variable (1) (2) (3) (4) 

east central west northeast 

enerdig 0.261*** 0.043 − 0.038 0.034** 
(0.062) (0.062) (0.027) (0.014) 

fdi − 0.004 0.122 0.368*** − 0.141*** 
(0.033) (0.084) (0.075) (0.042) 

size 0.942*** 0.532*** 0.246*** − 0.008 
(0.208) (0.183) (0.093) (0.034) 

city − 1.918 5.146*** 0.343 3.737*** 
(1.209) (1.739) (0.856) (0.991) 

ins 0.849*** 0.356 0.443*** − 0.061** 
(0.114) (0.215) (0.100) (0.023) 

trans − 17.600** − 35.850*** 7.306 − 0.373 
(7.620) (10.080) (11.690) (3.401) 

constant 0.432 − 2.029*** − 0.684** − 1.738*** 
(0.649) (0.512) (0.330) (0.562) 

N 100 60 110 30 
R2 0.812 0.838 0.709 0.932  

Table 8 
Results of time heterogeneity test.  

Variable (1) (2) 

2012–2015 2016–2021 

enerdig 0.049** 0.078** 
(0.023) (0.038) 

fdi 0.002 0.168*** 
(0.017) (0.063) 

size 0.385** 0.613*** 
(0.165) (0.104) 

city 1.363 − 1.175 
(0.936) (0.933) 

ins 0.711*** 0.743*** 
(0.214) (0.081) 

trans 8.846 − 7.529 
(7.428) (6.924) 

constant − 1.491*** − 0.225 
(0.430) (0.396) 

N 120 180 
R2 0.510 0.580  
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condition, and resource dependence reach 9.2225, 0.0006, 0.4377, and 
0.0556, respectively, the likelihood ratio (LR) value of the statistical test 
becomes zero, as depicted in Fig. 4. 

Table 11 presents the results of the threshold regression analysis. 
Specifically, ① Column (1) reports the threshold effect results based on 
marketization (market) as the adjusting variable. When the marketiza
tion level exceeds 9.2225, the influence coefficient changes from 0.083 
to 1.181, with statistical significance at the 1% level. This aligns with 
Liang et al.’s findings [124], suggesting that digitalization has a more 
favorable impact in regions with higher levels of marketization. Chen 
[79] also noted that mature markets can enhance the role of digitali
zation in promoting renewable energy development, contributing posi
tively to low CP. A mature market system provides institutional support 
for digitalization dividends, aiding resource allocation and low-carbon 
innovation, ultimately yielding a more significant low-carbon eco
nomic effect. ② Column (2) presents the regression results with envi
ronmental regulation (regulation) as the threshold variable. When 
environmental regulations become more stringent, the coefficient of the 
core explanatory variable decreases by 55.072%. This differs from the 
perspective of Yang and Liang [125] and supports the “compliance cost 
theory” of environmental regulation. Excessive command-based envi
ronmental regulations can impose innovation costs on enterprises [126] 
and hinder the digitalization process, limiting the contribution of ED to 
low-carbon economic development. Therefore, the government should 
consider adopting a market-oriented and government-coordinated 

approach to balance pollution control investment and digitalization 
promotion. ③ Column (3) reports the nonlinear relationship when 
adjusting for digital infrastructure (diginfra). The result shows that when 
diginfra exceeds 0.4377, a 1% increase in ED leads to a 0.205% increase 
in CP. This finding is consistent with Chen’s [92] observation that 
advanced digital infrastructure is the cornerstone of digitalization, 
providing robust technical support for fully releasing the low-carbon 
economic impact. ④ Column (4) presents regression results with 
resource dependence (dependence) as the threshold variable. When 
resource dependence is less than 0.0556, the influence coefficient of ED 
on CP is 0.176, significant at the 0.01 level. However, the effect coef
ficient is no longer statistically significant when dependence surpasses 
the threshold value. The paper suggests that regions with high resource 
dependence tend to adopt a rigid and extensive development approach, 
squeezing high-end factors such as technology and human capital. This 
limits the carbon reduction impact of ED in these regions. 

5.4. Results of spatial effects 

5.4.1. Analysis of spatial correlation 
This study uses the Moran index to conduct a spatial correlation test. 

Table 12 displays the global Moran index based on the economic 
geographic distance weight matrix. Both low-carbon economic devel
opment and ED exhibit a significant positive spatial correlation. How
ever, it is worth noting that the Moran index varies, suggesting that 

Table 9 
Results of intermediary mechanism.  

Variable (1) (2) (3) (4) (5) (6) 

enerinno CP enerstru CP enereffi CP 

enerdig 0.137*** 0.076** 0.022** 0.107*** 0.124*** 0.043** 
(0.028) (0.030) (0.010) (0.030) (0.039) (0.020) 

fdi − 0.122*** 0.042 0.005 0.009 − 0.024 0.023 
(0.026) (0.027) (0.009) (0.027) (0.036) (0.018) 

size 0.079 0.748*** − 0.062** 0.783*** 0.919*** 0.258*** 
(0.083) (0.083) (0.028) (0.086) (0.113) (0.065) 

city 13.150*** − 2.368** − 0.771*** 1.265** 5.178*** − 1.793*** 
(0.588) (1.001) (0.197) (0.624) (0.803) (0.444) 

ins 0.810*** 0.442*** − 0.058*** 0.668*** 0.455*** 0.402*** 
(0.061) (0.079) (0.021) (0.064) (0.084) (0.045) 

trans 19.150*** − 19.190*** − 1.342 − 13.850*** − 1.723 − 13.200*** 
(4.924) (5.063) (1.652) (5.084) (6.717) (3.454) 

enerinno  0.263***      
(0.062)     

enerstru    0.232      
(0.189)   

enereffi      0.556***      
(0.032) 

constant 2.687*** − 1.971*** 1.281*** − 1.562*** − 3.020*** 0.414* 
(0.269) (0.315) (0.090) (0.368) (0.367) (0.211) 

Sobel test Z = 3.600 
P = 0.000 

Z = 3.341 
P = 0.001 

Z = 5.562 
P = 0.000 

Bootstrap test1 Z = 3.490 
P = 0.000 

Z = 3.600 
P = 0.000 

Z = 4.84 
P = 0.000 

N 300 300 300 300 300 300 
R2 0.941 0.654 0.252 0.632 0.657 0.830  

Table 10 
Results of threshold effect test.  

Threshold variable (Threshold value) Threshold test F value P value BS times Critical value 

10% 5% 1% 

market 
(9.2225) 

Single threshold 36.440 0.047 300 29.197 36.310 60.478 
Double threshold 20.790 0.243 300 31.443 38.932 56.379 

regulation 
(0.0006) 

Single threshold 26.820 0.023 300 19.225 23.293 30.974 
Double threshold 4.200 0.740 300 19.797 25.767 33.617 

diginfra 
(0.4377) 

Single threshold 69.820 0.000 300 24.355 31.430 52.964 
Double threshold 11.960 0.343 300 23.523 34.887 54.510 

dependence Single threshold 109.680 0.003 300 40.142 51.981 98.846 
(0.0556) Double threshold 16.860 0.487 300 40.354 57.820 78.173  
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spatial distribution patterns substantially influence both variables. Fig. 5 
illustrates that most data points are clustered in the first and third 
quadrants, indicating a “high-high” aggregation pattern and “low-low” 
aggregation for both variables. 

Furthermore, we applied the spatial Markov chain model to inves
tigate the spatio-temporal correlation of regional CP. This analysis 
categorized CP into three types: 1, 2, and 3, representing low, medium, 
and high CP, respectively. Table 13 presents the transition probability 
matrix for both traditional and spatial Markov models. Under the 
traditional Markov analysis, the following observations can be made: ① 
The diagonal probability is greater than the non-diagonal values, 
exceeding 75%, indicating strong stability in regional carbon perfor
mance during the study period. In contrast, the non-diagonal probability 
values are smaller, with the highest value at 15.493%. This suggests that 
the spatial transfer of carbon performance is a gradual process that re
quires coordinated efforts in terms of technology and policy. ② The 
probability values at the two diagonal corners are 94.203% and 
98.361%, significantly higher than the 84.507% in the middle of the 
matrix. This pattern indicates a “Matthew effect” in the distribution of 
CP over successive years. ③ By comparing the mean of non-diagonal 
probabilities, it is evident that the probability of downward transfer in 
interregional CP (1.639%) is significantly lower than the probability of 
upward transfer (10.645%). This signifies a positive trend in China’s 
low-carbon transformation. 

Notable changes in probability values are observed upon comparing 
the spatial Markov chain with the traditional Markov chain, under
scoring the critical role of neighborhood states in CP. The statistical test 
shows df = 3× (3 − 1)2

= 12, α = 0.005, Qb = 33.562 > χ2(12) =

28.300. This result rejects the null hypothesis that regional CP types are 

independent. Therefore, we conclude that regional CP types exhibit 
significant spatial correlation with neighboring states. ① Neighborhood 
State Analysis: When the neighborhood state is categorized as type 3, the 
probability of regional carbon performance transfer is the highest 
(11.111%) and lowest (4.061%) when the neighborhood is classified as 
type 1. This suggests that regional CP exhibits spatial correlation, with 
low-carbon neighborhoods more likely to contribute to “carbon 
improvement” within the region, while high-carbon neighborhoods tend 
to have a “carbon locking” effect. ② Initial State Analysis: For initial 
states 1, 2, and 3, the average probability of regions maintaining their 
original carbon performance type is 88.437%, 86.917%, and 98.889%, 
respectively. Compared to the traditional Markov analysis, regions with 
an initial state of type 1 experience a noticeable decrease of 5.766%. 
This indicates that regions with high CP display less volatility in low- 
carbon development than other regions. ③ Transition Probability 
Analysis: On one hand, as the neighborhood state transitions from 1 to 3, 
the upward transfer probability of regional states gradually increases, 
while the downward transfer probability gradually decreases, exhibiting 
a “club convergence” phenomenon. On the other hand, when the 
neighborhood is type 1, the probability of the initial region maintaining 
the same CP type is 96.907%, and when the neighborhood is type 3, the 
probability is 1. These values are higher than those observed in the 
traditional Markov analysis (94.203% and 98.361%). This reinforces the 
“Matthew effect.” ④ Analysis of the Number of Regions: When the 
neighborhood state is 3, 24 regions (nearly 50%) exhibit low-carbon 
characteristics during the period t. Conversely, when the neighbor
hood state is 1, high-carbon regions account for 84.348%. In both cases, 
the number of regions with the same CP type exceeds 50%, indicating a 
collaborative pattern in regional CP levels. 

Fig. 4. Likelihood ratio function graph of the threshold variables: market (a), regulation (b), diginfra (c), and dependence(d).  
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5.4.2. Analysis of spatial effects 
Based on a series of statistical tests, including LM, Wald test, LR, and 

Hausman, we have established the SDM, with the results presented in 
Table 14. The coefficients of ρ in the three fixed effects SDMs are 
significantly positive, providing further evidence of the spatial correla
tion of CP. Given the significance of the variables and the LR test results 
[127], our focus will be on the outcomes of the double fixed-effect SDM, 
as illustrated in column (3). In this model, it is evident that ED positively 
impacts CP, with a coefficient of 0.200 for W×enerdig. This finding in
dicates that ED possesses spillover effects on neighboring regions, 
thereby offering preliminary support for hypothesis 4 outlined in this 
paper. 

It is important to note that due to the spatial rebound effect among 
variables, fully capturing the spatial correlation requires examining the 
influence of variables and their spatial interaction terms and considering 
various spatial influences of ED. To achieve this, we have applied the 
dynamic SDM, and the results are presented in Table 15. ① Regarding 
the spatial direct effect, ED significantly and positively impacts regional 

CP. Importantly, there is no significant change in the short and long- 
term direct effects. Specifically, for every 1% increase in ED, the CP of 
the internal region increases by 0.066% during the short period and 
0.051% in the long run. ② Concerning the spatial spillover effect, ED 
demonstrates a favorable spillover effect on the CP of external regions, 
providing strong evidence supporting hypothesis 4 outlined in this 
paper. This spillover effect is more pronounced during the short period, 
with elastic coefficients of 0.232 and 0.188, respectively. The possible 
reason for this is that it is easier to establish collaborative digital stra
tegies between regions in the long run, which may weaken the spillover 
effect caused by peer effects and, consequently, reduce the long-term 
spatial spillover effect. ③ Regarding the spatial total effect, it shows a 
significant positive impact in both the long and short term due to the 
accumulation of positive direct and spillover spatial effects. 

5.5. Robustness test 

In terms of robustness testing, this study conducts four different es
timations to assess the robustness of the results. The outcomes of these 
tests are presented in Table 16. The four robustness tests involve 
replacing the core independent variable, substituting the dependent 
variable, reducing the sample period, and addressing extreme values. 
The results are as follows: ① Replace the core independent variable. In 
column (1), the core independent variable ED is replaced by the pro
portion of intangible assets in energy enterprises (digreplace), which can 
serve as a proxy for the digitalization degree of enterprises. The results 
demonstrate that the proportion of intangible assets in energy enter
prises is positively associated with CP, reaffirming the reliability of the 
previous conclusions.; ② Replace the dependent variable. In column (2), 
per capita carbon emissions are introduced as a reverse substitute var
iable for low-carbon economic development, following Guo et al. [43]. 
The analysis reveals that ED effectively reduces per capita carbon 
emissions, further supporting the earlier findings: ③ Reduce sample 
period. Column (3) presents the estimation results after excluding the 
initial and final periods of the research sample, retaining data from 2013 
to 2020. The coefficients and significance levels of the variables remain 
consistent with the previous findings, demonstrating the robustness of 
the results over this reduced sample period; ④ Eliminate the extreme 
value. Inspired by Luo et al. [47], 5% extreme values for all variables are 
removed to mitigate the influence of outliers. This approach enhances 
the credibility of the findings, as shown in column (4). 

5.6. Discussion 

This study seeks to investigate the multifaceted effects of energy 
digitalization on CP. The objective is to furnish empirical evidence and 
policy guidance for transforming a digitally-driven energy system, 
underscoring its potential for low-carbon development. 

On the one hand, paralleling the research paradigms in extant 
literature [47,96], the multidimensional impact of digitalization on 
low-carbon development has been comprehensively examined. 

Table 11 
Result of the threshold model.  

Variable (1) (2) (3) (4) 

market regulation diginfra dependence 

enerdig (market ≤
9.2225) 

0.083***    
(0.028)    

enerdig (market >
9.2225) 

0.181***    
(0.030)    

enerdig (regulation ≤
0.0006)  

0.207***    
(0.034)   

enerdig (regulation >
0.0006)  

0.093***    
(0.028)   

enerdig (diginfra ≤
0.4377)   

0.079***    
(0.027)  

enerdig (diginfra >
0.4377)   

0.205***    
(0.029)  

enerdig    0.176*** 
(dependence ≤

0.0556)    
(0.026) 

enerdig    0.012 
(dependence >

0.0556)    
(0.027) 

fdi 0.010 − 0.013 0.043* − 0.023 
(0.025) (0.026) (0.025) (0.023) 

size 0.672*** 0.731*** 0.597*** 0.567*** 
(0.082) (0.082) (0.080) (0.076) 

city 1.066* 1.036* 0.750 0.808 
(0.573) (0.582) (0.547) (0.519) 

ins 0.617*** 0.629*** 0.621*** 0.606*** 
(0.060) (0.061) (0.057) (0.054) 

trans − 16.700*** − 13.400*** − 13.810*** − 10.650** 
(4.812) (4.874) (4.561) (4.352) 

constant − 1.052*** − 1.114*** − 0.875*** − 0.767*** 
(0.264) (0.268) (0.254) (0.242) 

N 300 300 300 300 
R2 0.672 0.661 0.703 0.732  

Table 12 
Results of Moran’s I.  

Year CP Year enerdig 

I Z E(I) sd(I) I Z E(I) sd(I) 

2011–2012 0.174** 2.239 − 0.034 0.093 2012 0.039 0.605 − 0.034 0.121 
2012–2013 0.167** 2.151 − 0.034 0.094 2013 0.126* 1.308 − 0.034 0.123 
2013–2014 0.139** 1.908 − 0.034 0.091 2014 0.107 1.138 − 0.034 0.124 
2014–2015 0.16** 2.102 − 0.034 0.092 2015 0.256*** 2.357 − 0.034 0.123 
2015–2016 0.15** 2.037 − 0.034 0.091 2016 0.350*** 3.163 − 0.034 0.122 
2016–2017 0.144** 2.05 − 0.034 0.087 2017 0.213** 1.99 − 0.034 0.124 
2017–2018 0.141** 2.065 − 0.034 0.085 2018 0.212** 1.977 − 0.034 0.125 
2018–2019 0.132** 1.966 − 0.034 0.085 2019 0.277*** 2.517 − 0.034 0.124 
2019–2020 0.116** 1.797 − 0.034 0.084 2020 0.217** 2.029 − 0.034 0.124 
2020–2021 0.125** 1.900 − 0.034 0.084 2021 0.150* 1.522 − 0.034 0.121  
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Empirical results based on microscopic data validate digitalization’s 
low-carbon potential and regional heterogeneity’s impact [95]. 
Concurrently, our findings suggest that energy technology innovation 
acts as a positive transmission mechanism, furnishing robust evidence 
for its current intermediary role in technology innovation [62]. Addi
tionally, our analysis reveals that CP exhibits spatial correlation char
acteristics. Through spatial transmission, digitalization can exert a 
positive spatial influence on regional external CP levels, consistent with 
the study [128], laying a theoretical foundation for further exploration 
of digitalization’s spatial effects. 

On the other hand, our research has yielded several unexpected in
sights and novel contributions. Firstly, this represents the inaugural 
quantitative investigation into the digitalization of the energy sector, 
augmenting the body of theoretical research on industrial digitalization, 
building upon previous studies focused on overall industrial [50], 
manufacturing sector digitalization [129] and agriculture [130]. 
Notably, our study does not corroborate the inverted U-shaped rela
tionship between energy digitalization and CP, diverging from the 
findings of previous studies of Zhao et al. [104] and Cheng et al. [55]. 
This could be attributed to the dual considerations of carbon emissions 
and economic benefits, where energy digitalization potentially re
structures factor compositions and deepens industrial organization 
forms, propelling the low-carbon transition of the industry and serving 
as a pivotal point for economies to surpass the Environmental Kuznets 
Curve (EKC) inflection point. Secondly, the mediating regression results 
validate the positive transmission mechanism of energy structure and 
energy utilization efficiency, thereby enriching the mechanism research 
on digital carbon reduction and offering new directions for govern
mental policy formulation. Thirdly, building upon existing studies on 
the regulatory roles of marketization [52] and environmental regulation 

[93], our research further probes the heterogeneity in external infra
structure and energy dependence in digitalization, addressing the cur
rent research gap on the nonlinear relationship between digitalization 
and low-carbon development. This provides theoretical underpinnings 
for the formulation of region-specific energy digitalization policy. 
Lastly, the spatial Markov chain analysis reveals the presence of 
“Matthew effect” and “club-driven” phenomena in the spatio-temporal 
distribution of China’s regional CP. This enriches the understanding of 
CP’s spatial and temporal distribution characteristics, extending beyond 
the spatial correlations established by the Moran index [47,55]. It is 
noteworthy that the short-term spatial impact of energy digitalization is 
more pronounced compared to long-term spatial effects. This finding 
supplements existing research on the spatial implications of 

Fig. 5. Moran scatter plots of acp (the mean value of CP) (a) and aenerdig (the mean value enerdig) (b).  

Table 13 
Results of spatial Markov model.  

Markov 
Type 

Neighborhood Type t\t+1 1 2 3 n 

Traditional 
Markov 

\ 1 0.942 0.058 0.000 138 
2 0.000 0.845 0.155 71 
3 0.000 0.016 0.984 61 

Spatial 
Markov 

1 1 0.969 0.031 0.000 97 
2 0.000 0.909 0.091 11 
3 0.000 0.000 1.000 7 

2 1 0.906 0.094 0.000 32 
2 0.000 0.810 0.190 42 
3 0.000 0.033 0.967 30 

3 1 0.778 0.222 0.000 9 
2 0.000 0.889 0.111 18 
3 0.000 0.000 1.000 24  

Table 14 
Results SDM model regression.  

Variable (1) (2) (3) 

ind time both 

enerdig 0.083*** 0.084** 0.093*** 
(0.021) (0.036) (0.021) 

fdi 0.058*** 0.092*** 0.046** 
(0.019) (0.021) (0.019) 

size 0.204*** − 0.279*** 0.143** 
(0.064) (0.079) (0.067) 

city − 3.271*** − 2.135*** − 3.659*** 
(0.970) (0.573) (0.973) 

ins 0.577*** 0.767*** 0.544*** 
(0.066) (0.045) (0.070) 

trans 1.550*** 1.721*** 1.630*** 
(0.102) (0.180) (0.104) 

W×enerdig 0.138*** 0.045 0.200*** 
(0.040) (0.088) (0.052) 

W×fdi 0.095* 0.222*** − 0.037 
(0.049) (0.086) (0.064) 

W×size 0.072 0.764*** − 0.277 
(0.129) (0.230) (0.192) 

W×city − 18.160*** − 2.299 − 20.400*** 
(2.230) (1.944) (2.516) 

W×ins 0.391*** − 0.223 0.331 
(0.144) (0.180) (0.234) 

W×trans 1.727*** − 1.362*** 2.417*** 
(0.306) (0.440) (0.361) 

ρ − 0.347*** 0.201** − 0.453*** 
(0.105) (0.098) (0.106) 

σ2 0.018*** 0.121*** 0.017*** 
(0.002) (0.010) (0.001) 

N 300 300 300 
Log-Likelihood 172.498 − 109.645 182.333 
LR-ind 19.670** 
LR-time 583.960***  
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digitalization and offers significant theoretical contributions to the 
strategies for inter-regional digital transformation collaboration. 

6. Conclusion and implications 

6.1. Conclusions 

The energy sector is undergoing a transformative phase marked by a 
burgeoning digital technology revolution and industrial metamorphosis, 
establishing a robust impetus for low-carbon development. Utilizing 
provincial data from China spanning 2012 to 2021, this study strives to 
unravel the intricate interplay between ED and developing a low-carbon 
economy through theoretical analysis and empirical testing. Our find
ings culminate in four pivotal insights: ① Energy digitalization mark
edly enhances CP, a valid conclusion even after conducting endogeneity 
and robustness assessments. Additionally, heterogeneity analyses reveal 
that this positive effect is more pronounced in China’s eastern regions 
and the years after 2015. ② Energy digitalization indirectly influences 
CP by innovating energy technology, refining the clean energy structure, 
and boosting energy utilization efficiency. Notably, improvements in 
energy utilization efficiency emerge as the most influential factor. ③ 
The relationship between ED and CP is nonlinear and is influenced by 
external environmental factors. The existence of mature markets, suit
able environmental regulations, advanced digital infrastructure, and 
reduced dependence on resources tend to foster a more favorable 
environment for this relationship. ④ Both ED and CP exhibit distinct 
spatial aggregation characteristics. Energy digitalization not only bol
sters CP within its region but also generates positive spillover effects on 
CP in neighboring regions, with these influences being more significant 
in the short term. 

6.2. Policy implications 

Given the above findings, we propose policy implications from three 
levels. 

On a national level, there is an urgent need to advance the strategy of 
ED, accelerate the digitalization of energy sectors, and construct new 
power systems characterized by digitalization to drive the clean and 
intelligent development of energy systems. Firstly, it is essential to 
bolster digital infrastructure construction within the energy industry, 
providing the necessary hardware support for ED. This entails imple
menting specific actions in critical areas such as intelligent 
manufacturing, the energy Internet, smart grids, and energy big data. 
Secondly, guided by the “dual carbon” goal, it is necessary to promote 
integration innovation of digital and energy technology. This includes 
fostering the rapid development of digitalization in areas such as energy 
conservation, environmental protection, new energy, energy storage, 
distributed energy, and more. These efforts will enhance the develop
ment quality and efficiency of the energy industry. Macro-level strate
gies can be explored in constructing renewable energy power stations 
supported by data and processes, optimizing carbon emission manage
ment in conventional power supply through digital means, and 
enhancing the intelligent optimization of multi-level power system op
erations that support renewable energy. 

At the regional level, governments should focus on institutional 
development to create a supportive regulatory environment for ED. 
Regional governments should establish an inclusive, differentiated, and 
precise policy framework based on environmental regulation intensity, 
market competition levels, digital infrastructure construction, and car
bon emission reduction goals. Instead of excessive government inter
vention, the emphasis should be on promoting market-oriented reforms, 
reducing direct resource allocation, and avoiding administrative mo
nopolies to foster a conducive institutional environment for ED. 
Furthermore, considering the spatial effects of ED on CP, inter-regional 
governments should collaborate in building digital networks to harness 
the regional benefits of digitalization effectively. Breaking down digital 
barriers, establishing inter-regional energy networks, and highlighting 
the relative strengths of different zones, especially between the eastern 
and northeastern regions, is essential. Given the disparities in digital 
infrastructure and resource endowments between the eastern and cen
tral regions, the central and western regions may require additional 
support to realize the full potential of digital transformation’s carbon 
emission reduction. Leveraging the financial and technological advan
tages of the eastern region while optimizing renewable energy infra
structure in the central and western regions can enhance the adoption of 
clean energy. 

At the enterprise level, energy companies, as key players in ED, must 
proactively respond to the inevitable digital transformation trend. En
terprises should actively engage in industry-university-research collab
oration strategies, strengthen partnerships with universities and energy 
research institutes, enhance digital literacy, and bolster digital innova
tion capabilities. There is a pressing need to invest in research and 
development, focusing on applying digital technology throughout the 
energy supply chain, for instance, encouraging innovation in smart grid 

Table 15 
The decomposition of spatial effect.  

Variable Short-term spatial effects Long-term spatial effects 

Direct Spillover Total Direct Spillover Total 

enerdig 0.066*** 0.232*** 0.298*** 0.051** 0.188*** 0.238*** 
(0.022) (0.051) (0.058) (0.024) (0.042) (0.044) 

Control variables Control 
ρ 0.220* 

(0.132) 
σ2 0.016*** 

(0.001) 
Log- Likelihood − 4404.537  

Table 16 
Results of the robustness test.  

Variable (1) (2) (3) (4) 

X. replace Y. replace Timecut Winsor 

digreplace 25.720*    
(15.140)    

enerdig  − 0.034*** 0.109*** 0.119***  
(0.007) (0.032) (0.029) 

fdi 0.016 − 0.014*** 0.034 0.008 
(0.027) (0.004) (0.035) (0.026) 

size 0.760*** 0.093*** 0.632*** 0.753*** 
(0.088) (0.015) (0.093) (0.084) 

city 0.912 0.305*** 0.515 1.218** 
(0.668) (0.075) (0.763) (0.606) 

ins 0.721*** − 0.050*** 0.625*** 0.619*** 
(0.062) (0.009) (0.072) (0.063) 

trans − 8.800* − 0.420 − 11.700** − 14.230*** 
(5.151) (0.383) (5.774) (5.138) 

constant − 1.150*** 0.017 − 0.856** − 1.300*** 
(0.310) (0.036) (0.345) (0.274) 

N 300 300 240 300 
R2 0.614 0.586 0.590 0.632  
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and multi-energy complementary technology for transmission and 
fostering the development of virtual power plants and electric energy 
substitution technology for distribution. Enterprises should also focus on 
innovation in energy data and deepen its application. This includes 
breakthroughs in critical technologies like resource scheduling, moni
toring management, in-depth analysis, and the integration of cutting- 
edge technologies such as the Internet of Things, artificial intelligence, 
blockchain, big data, edge computing, and digital twins with core 
business processes. Additionally, energy companies should adapt their 
digital strategies, improve their organizational structures and opera
tional mechanisms, and facilitate the seamless integration of digital 
technologies with business strategies and objectives. Developing a 
diverse talent pool for ED is crucial. Encouraging employees to enhance 
their proficiency in applying digital technology achievements and 
fostering technical exchanges and cooperation are essential steps to 
realize ED’s low-carbon development benefits fully. 

6.3. Limitations and future directions 

We have delved deep into the impact of digital transformation on CP, 
but it is important to acknowledge certain limitations in our study. 
Firstly, the absence of authoritative data on the energy industry and the 
exclusion of data on unlisted companies might limit the applicability of 
our findings, especially in comparison to developed economies. Sec
ondly, given the complexity of the issue and the rigorous mathematical 
relationships involved, addressing endogeneity in the mediating effect 
could have been addressed more effectively. Endogeneity is a well- 
recognized challenge in econometrics. Lastly, the lexicon of digital 
transformation constructed in this article may require periodic updates 
in future research due to the rapid evolution of the digital economy. 

In future studies, the research framework developed in this paper can 
be extended to different industries, such as the cultural industry, agri
culture, tourism, or other developing countries. This expansion will 
further enrich our understanding of the relationship between digital 
transformation and CP in diverse contexts. To mitigate the endogeneity 
issues in econometric models, a promising approach involves combining 
theoretical analysis and mathematical derivation to establish a robust 
mathematical model between the core variables. Additionally, to keep 
the research up-to-date, it is advisable to regularly update the keyword 
analysis by capturing critical terms from policy texts related to digital 
transformation and industrial development planning each year. This will 
allow for the continuous expansion of the digital transformation vo
cabulary in future studies. 
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