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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Mark Howells Digitalization is a driving force behind the ongoing energy industrial revolutions, catalyzing China’s pursuit of
carbon neutrality and sustainable development. Leveraging provincial data and annual reports from energy
enterprises in China, this study constructs a comprehensive analytical framework that encompasses benchmark
regression models, mediating effect models, threshold models, and spatial econometric models. These models are
utilized to investigate the multi-faceted impacts of energy digitalization on carbon productivity (CP). The aim is
to furnish micro-level evidence and policy guidance for advancing energy transformation and fostering low-
carbon development enriched with digital elements. This research employs natural language processing and
machine learning techniques to compute an Energy Digitalization Index, examining two critical dimensions:
digital industry investment and the inclination toward digital transformation. The following key findings emerge:
firstly, energy digitalization (ED) exhibits a statistically significant ability to enhance regional CP, a phenomenon
marked by temporal and regional variations. Secondly, the analysis confirms the transmission mechanisms
associated with energy technology innovation, energy structure, and energy utilization efficiency, as revealed
through the Logarithmic Mean Divisia Index (LMDI) decomposition method. Furthermore, the optimal effect of
energy digitalization on low-carbon economies materializes in settings characterized by mature market condi-
tions, modest environmental regulations, advanced digital infrastructure, and reduced resource dependency.
Additionally, the spatial Markov chain analysis unveils a conspicuous spatial distribution pattern termed “club
convergence” in regional CP, accompanied by a pronounced “Matthew effect.” According to the spatial Durbin
model, energy digitalization generates favorable spatial spillover effects, primarily in peripheral regions, with a
more pronounced short-term influence. Building upon these insights, this paper presents pertinent policy rec-
ommendations encompassing the national “digital energy” strategy, regional differentiation policies, and ini-
tiatives to stimulate digital technology innovation among enterprises. Our findings furnish robust empirical
evidence and constructive policy insights, empowering governments to forge a smarter and cleaner energy
ecosystem. Furthermore, these findings offer valuable guidance for other developing nations seeking to imple-
ment effective digital strategies.
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1. Introduction

The contemporary world confronts a myriad of global challenges
encompassing economic stagnation, energy security concerns, and the
ever-pressing climate crisis [1]. The Sustainable Development Goals
(SDGs) of the United Nations have long beckoned nations to establish
accessible, dependable, and sustainable modern energy sources (SDG7 -
Affordable and Clean Energy) while simultaneously urging immediate
action to combat climate change (SDG13 - Climate Action). In this
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context, the low-carbon economy stands as a pivotal approach to
harmonize socioeconomic growth, ensure energy security, and confront
climate change—a consensus embraced by nations across the globe [2].
Among these nations, China, recognized as the world’s largest energy
consumer and carbon emitter, has set its sights on achieving carbon
neutrality by 2060, which necessitates a comprehensive and profound
economic transformation. Significantly, the energy sector, the most
significant contributor to carbon emissions and a linchpin of the national
economy, has emerged as the epicenter of efforts to catalyze a
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low-carbon economy [3]. Nevertheless, numerous obstacles persist
within China’s energy industry, including mounting environmental
resource constraints, imbalances in energy structures, and the persis-
tence of low-level energy technologies—challenges that collectively
amplify the complexity of carbon reduction efforts [4].

In the era of the digital economy, digitalization has demonstrated
significant potential for carbon reduction by promoting the optimization
of industrial structures, facilitating technological innovation, and
reducing energy intensity. As the latent power of digitalization con-
tinues to be harnessed, various actors at macro, meso, and micro levels
have embarked on the journey of digitalization. Notably, industrial
digitalization has emerged as an inexorable trend within the current
wave of technological revolution and industrial reform [5]. China’s
“14th Five-Year Plan for Digital Economy Development” and “14th
Five-Year Plan for Modern Energy System” both underscore the pivotal
role of digitalization in the energy sector, positioning it as the “sixth
energy” following the “fifth energy - energy conservation” [6]. Energy
digitalization is heralded as a profound industrial revolution, with data
as its core production factor, digital technology as the primary driver,
and digital transformation as its new vehicle [7]. From the perspective
of sustainable energy development, scholars have substantiated that the
application of digital technology in the energy sector can mitigate en-
ergy poverty [8], bolster energy security [9], resolve the conundrum of
the energy triangle [10], and propel energy transformation [11].
Conversely, the convergence of digital technology and the energy in-
dustry has proven instrumental in stimulating economic growth, thereby
enhancing energy efficiency [12], fostering technological innovation
[13], and fortifying corporate resilience [14]. Undoubtedly, energy
digitalization (ED) holds the potential to become an indispensable
catalyst for advancing the energy sector and modernizing the industrial
supply chain. It represents a novel driving force in realizing China’s
blueprint for “carbon neutrality.” Nonetheless, prevailing research often
treats “digital” as an external factor in the energy industry’s develop-
ment, predominantly focusing on the influence of digital technology or
the digital economy on the energy sector. This approach fails to seam-
lessly integrate the digital realm with the energy industry, leading to a
limited emphasis on the concept of energy digitalization, let alone its
quantification. Simultaneously, research concerning the low-carbon
impacts of digital transformation is primarily confined to mechanistic
analyses and lacks the identification of multi-dimensional influence
effects.

In this paper, we employ economic growth theory and digital econ-
omy theory to elucidate the intricate relationship between ED and car-
bon productivity (CP). To accommodate the availability of data and the
regional disparities within China, we have selected Chinese inter-
provincial panel data spanning from 2012 to 2021 as our research
sample for empirical analysis. The pertinent data have been sourced
from regional statistical yearbooks and enterprise annual reports,
renowned for their credibility and authoritative nature. In our research
methodology, we judiciously employ targeted econometric models to
discern the impact of different dimensions. Firstly, we scrutinize the
direct influence of ED on regional CP through fixed-effect models and
instrumental variable methods. Secondly, we explore the intermediary
mechanisms through which ED influences CP, focusing on three key
aspects: energy technology innovation, energy structure optimization,
and enhancements in energy utilization efficiency. Thirdly, we unveil
multiple threshold effects contingent on external factors such as mar-
ketization, environmental regulations, digital infrastructure, and
resource dependency. Finally, we delve into both short-term and long-
term spatial spillover effects using the Spatial Durbin Model (SDM).

This paper makes significant contributions to previous studies in four
key aspects. Firstly, it firmly recognizes the crucial role of the energy
industry in driving low-carbon development. To our knowledge, this
study is the first to investigate the impact of energy digitalization on CP
within the Chinese context. In measurement, we adopt an innovative
approach employing natural language processing and machine learning
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techniques to estimate the ED index, focusing on two dimensions: digital
industry investment and the willingness to embrace digital trans-
formation. This pioneering method provides a fresh perspective on
quantifying digitalization within this specialized field. Secondly, we
enrich the existing body of knowledge by subdividing the transmission
mechanism of digitalization’s impact on CP into three distinct facets:
energy technology, energy structure, and energy utilization efficiency,
building upon the Logarithmic Mean Divisia Index (LMDI) decomposi-
tion method. This innovative approach goes beyond conventional in-
terpretations and broadens the theoretical foundation of “digital carbon
reduction.” Thirdly, instead of solely concentrating on establishing a
linear relationship between ED and CP, we meticulously consider the
heterogeneity of the external environment, encompassing market dy-
namics, governmental policies, infrastructure conditions, and resource
dependencies. This comprehensive exploration of potential heteroge-
neous correlations between ED and CP can serve as a blueprint for
environmental restructuring, thereby maximizing the positive impact of
ED. Fourthly, we employ the Spatial Markov Chain model to elucidate
the spatiotemporal dynamics of CP. By integrating spatial and temporal
dimensions, we effectively capture the influence of ED on CP in external
regions. This approach both complements and extends prior static in-
vestigations. Consequently, we propose a series of policy recommen-
dations aimed at harnessing digital opportunities and actively
promoting low-carbon development at the national, regional, and en-
terprise levels. Our fresh insights into the transmission mechanisms
provide a novel focal point for policy formulation. The analysis of
threshold effects helps delineate the relative disadvantages of regional
external environments, facilitating the implementation of dynamic dif-
ferentiation policies to maximize the low-carbon impact of digital
transformation. The revelation of spatial spillover effects in digital
carbon reduction promotes regional collaborative initiatives. Addition-
ally, our novel finding that short-term spatial effects are more pro-
nounced accelerates the pace of regional digital transformation peer
groups. In conclusion, this paper furnishes compelling evidence
regarding the carbon reduction potential of digital energy, contributing
to China’s “dual carbon” strategy and offering valuable insights for
resource-based and developing countries embarking on energy digital
transformation initiatives.

The remainder of this article is structured as follows: The subsequent
section conducts a comprehensive review of the literature pertaining to
ED, economic development, and carbon emissions. Section 3 delineates
the theoretical analysis and establishes research hypotheses. In the
fourth section, we introduce the econometric models and core variables.
Subsequently, Section 5 delves into the empirical results, while the
concluding section presents our findings and policy recommendations,
discusses limitations, and outlines future research directions.

2. Literature review
2.1. Research on digitalization and economic development

In the era of digitalization, scholarly attention has progressively
shifted from the macroeconomic development of the digital economy to
the micro-level digitalization of various subjects. Digitalization repre-
sents an advanced culmination of communication, information tech-
nology, and internet advancements [15]. Within academic discourse,
digitalization has been defined from diverse perspectives, encompassing
aspects like business models [16], technological transformations [17],
and intelligent manufacturing [18]. While the concept of digitalization
may not enjoy universal consensus across academic circles, there is a
broad consensus regarding its fundamental components. Firstly, digi-
talization fundamentally reshapes the operational activities of micro-
enterprises by applying modern information technology [19]. Secondly,
digitalization strongly emphasizes achieving value co-creation, ensuring
economies can secure competitive advantages and sustain growth
within highly competitive markets [20]. Thirdly, the overarching
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objective of digitalization lies in elevating the ecological stature of in-
dustrial economies [21].

Contemporary scholarly focus centers on the economic ramifications
of digitalization, with research falling into three distinct categories: ®
Micro Level Impact: Scholars have argued that digitalization integrates
data elements into traditional production systems, ushering in “creative
changes” in production organizational structures and the real economy’s
factor systems, significantly contributing to enterprise productivity
[22]. Quantitative methods such as fixed effects models, generalized
least squares estimation methods (FGLS), and Blinder-Oaxaca decom-
position have been employed to affirm the positive impact of digitali-
zation on productivity in various regions, including South Africa [23],
China [24], and Spain [25]. Furthermore, scholars have uncovered the
spatial impact of digitization on productivity [26] and explored the
nonlinear relationship between these two factors [27]. @ Meso Level
Impact: At the meso level, many scholars underscore the pivotal role of
digital technology in shaping industrial structural adjustments [28]. In
the collaborative development of digital industrialization and industrial
digitalization, digital technology consistently propels industrial trans-
formation and upgrading [29]. It is noteworthy that heterogeneity may
exist in this regard [30]. For instance, Fu [31] and Kan et al. [32] con-
ducted studies on manufacturing and service industries, respectively,
revealing that digitalization significantly impacts capital-intensive in-
dustries more than technology-intensive ones. ® Macro Level Impact: At
the macro level, the digital economy exerts a substantial influence on
economic development, primarily due to its substantial contribution to
the scale of the traditional economy [33]. According to Cai and Niu [34],
the added value of the digital economy in China witnessed an average
annual growth of 17.72% between 1993 and 2018, becoming a
cornerstone of China’s economic development. Zhang et al. [35] have
demonstrated that the positive economic growth impact of digitalization
is realized by supporting industrial structure upgrades, increasing total
employment, and reshaping employment structures.

2.2. Research on digitalization and carbon emission

Within the academic sphere, discussions regarding the influencing
factors of carbon emissions have been extensive and typically encompass
macro-environmental aspects, including financial development [36],
trade activities [37], foreign investment [38], energy-related aspects
like energy rent [39] and energy structure [40], as well as technological
innovation aspects such as patent support [41] and green innovation
[42]. In recent years, with the proliferation of the digital age, an
increasing body of research has emerged concerning the environmental
effects of digitalization. These studies are categorized into three primary
perspectives: inhibition theory, promotion theory, and nonlinear theory.
@ Inhibition Theory: This perspective posits that digitalization can
foster low-carbon innovation and optimize resource allocation, yielding
positive substitution effects on carbon emissions. This view finds sup-
port among prominent researchers [43,44]. Additionally, spatial
econometric models have been employed to confirm this perspective in
spatial geography [45,46]. In terms of the transmission mechanism,
relevant studies have primarily engaged in qualitative discussions and
quantitative examinations within the realms of promoting technological
innovation [47], optimizing industrial structures [48], and enhancing
resource allocation efficiency [49]. @ Promotion Theory: This
perspective argues that digitalization may counteract carbon emission
reduction, offering three essential explanations. Firstly, digitalization
often relies on numerous electronic devices and accessories, which
possess a higher energy demand throughout their lifecycle, conse-
quently amplifying carbon emissions [50]. Secondly, the “cost effect” of
digitalization suggests that the widespread use of ICTs leads to dimin-
ished marginal costs, reducing the cost of information while elevating
the cost of products and services, thereby diverting funds away from
carbon reduction efforts and accelerating carbon emissions [51].
Thirdly, the “energy rebound effect” of digitalization entails that energy
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efficiency and productivity improvements incentivize the industrial
sector to increase production and consume more energy, ultimately
leading to greater pollution. ® Nonlinear Theory: According to this
perspective, the relationship between digitalization and carbon emis-
sions is not fixed. Specifically, when the quadratic term of digital
transformation is introduced, it exhibits a distinct parabolic pattern [52,
53]. After incorporating spatial factors, Li and Wang [54] confirmed the
inverted “U"-shaped relationship between the two variables, while
Cheng et al. [55] arrived at a contrary conclusion. Moreover, some re-
searchers have unveiled a more intricate connection between the two by
constructing panel threshold models. For instance, when digitalization
serves as the threshold variable, Hao et al. [56] determined that the
influence of digitalization on carbon emissions assumes an inverted
“N-type” shape. Conversely, when the threshold variable is energy ef-
ficiency, Zhang et al. [57] identified an “N-type” relationship.

2.3. Research on energy digitalization

A comprehensive and authoritative analysis of energy digitalization
has yet to crystallize within academia. Scholars have delved into the
subject from various perspectives, including organizational digitaliza-
tion, management digitalization, process digitalization, and product
digitalization within energy enterprises and energy systems. Qualita-
tively, Semeraro et al. [58] employed a literature research method to
assess the current digitalization status in energy storage, evaluating
aspects such as application environment, life cycle stage, digital twin
functionality, and digital twin architecture. Polyanska et al. [59]
devised a model grounded in fuzzy set theory to gauge the digitalization
maturity of Ukrainian energy companies, encompassing dimensions like
strategy, human resources, organizational culture, technology, struc-
ture, and marketing, laying the groundwork for energy digitalization.
Quantitatively, Park et al. [60] employed an informal academic text
analysis coupled with the signal model to investigate the trajectory of
ED. Wang et al. [61] established an evaluation index framework for
energy digitalization, spanning four dimensions: integration basis,
integration conditions, integration applications, and integration per-
formance. Their findings revealed that China’s energy digitalization
level has progressively increased, albeit with notable regional dispar-
ities. Theoretical explorations underscore the pivotal role of energy
digitalization in enhancing energy efficiency [11], driving technological
innovation [62], and fortifying enterprise resilience [9]. Notably, it is
poised to emerge as a new catalyst propelling economic entities to tra-
verse the Environmental Kuznets Curve (EKC) [63,64].

While existing studies offer promising insights, they exhibit some
noteworthy shortcomings. Firstly, most researchers have primarily
explored the impact of digitalization on economic development and
carbon emissions without considering that China’s economic growth
and carbon emissions are not entirely decoupled. This limitation results
in an insufficient exploration of the intricate relationship between
digitalization and developing a low-carbon economy. Secondly, despite
the energy industry’s central role in China’s national economy and its
significant contribution to carbon emissions, existing research pre-
dominantly focuses on the digitalization of the manufacturing sector,
overlooking the specific nuances of energy digitalization. Thirdly, there
remains ample room for further investigation into the effects of digita-
lization. Specifically, examining influencing mechanisms tends to be
somewhat rigid, and heterogeneity analyses often fail to fully encompass
external environmental adjustments, and spatial effects frequently lack
temporal factor decomposition. Lastly, there is a pressing need for re-
finements in calculating the degree of ED. Presently, digitalization
measurement predominantly adopts a regional perspective, leading to a
dearth of precise measurements concerning the digitalization of partic-
ular industries.

This paper aims to bridge the gaps in the research mentioned above
by adopting innovative approaches. We leverage text mining technology
with word frequency statistics to evaluate the extent of energy
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digitalization. Simultaneously, we employ targeted econometric models
to explore the multifaceted impacts of energy digitalization on CP. These
models include the intermediary effect model, the threshold regression
model, and the SDM.

3. Theoretical analysis and research hypothesis
3.1. Direct effect of ED on CP

There is unanimous consensus that Energy Digitalization represents a
systematic revolution within the energy sector, facilitating the
advancement of high-quality energy development through the deep
integration of digital technology and the energy industry. In light of
pertinent research, we undertake an analysis of the fundamental essence
of ED. We contend that the essence of ED lies in the innovative inte-
gration of information technology, operational technology, and elec-
trical technology. Throughout this process, it orchestrates the orderly
flow of information, energy, and resources, culminating in a production
factor structure intricately intertwined with data and energy. Concur-
rently, ED empowers traditional production processes, management
methodologies, and business models with data-centric elements, giving
rise to novel networked production methods and platform-driven in-
dustrial organizational forms. It thereby reconstructs the nodes and logic
governing the creation and transfer of value within energy enterprises.
Ultimately, this transformation optimizes the efficiency of production,
operation, and maintenance across the entire energy industry chain.
Building upon this foundation, this paper asserts that ED can directly
influence CP from three pivotal perspectives: factor structure, industrial
organization, and technological advancement.

Viewed through the lens of factor structure, digitalization catalyzes a
transformative reconstruction of traditional factor structures, resulting
in profound changes to the energy industry’s production methods and
elevating Green Total Factor Productivity. The data factor, characterized
by its non-competitive and non-exclusive nature, has undeniably
assumed a pivotal role as a production factor within the digital economy
landscape. This development reinforces the conditions for escalating
returns to scale and expands the horizons of conventional economic
growth theory [65]. Facilitated by the permeability, substitutability, and
synergy inherent in digital technology, data elements can exert multiple
effects on energy components, including superposition, aggregation, and
multiplier effects. Consequently, Energy Digitalization restructures the
composition of traditional factors and optimizes resource allocation,
thereby facilitating the creation of new economic, social, and environ-
mental values. Moreover, digitalization revamps the production chain,
which is evident in the significant enhancements in operational effi-
ciency across the production process. This encompasses resource
extraction, production decision-making, equipment operation, product
processing, and electricity transportation, consequently diminishing
reliance on traditional production modes reliant on natural resources
and mitigating environmental pollution [66].

From the perspective of industrial organization, digitization carries
the potential to dismantle industrial boundaries and reconfigure tradi-
tional industrial organizational structures, thereby expediting CP.
Building on the insights of Xiao and Qi [67], digitalization can dismantle
the “information islands” among various entities within the industrial
value chain. This significantly diminishes transaction costs, weakens
industrial boundaries, and deepens the structure of industrial organi-
zation, nurturing an interconnected ecological community character-
ized by cohesion. Digitalization gives rise to a decentralized, networked
industrial ecosystem encompassing all facets of the energy industry,
thereby dismantling spatial and temporal limitations. This augmenta-
tion strengthens the synergistic impact of subdivided industries, elevates
the operational efficiency of energy systems, and paves the way for
progressive, streamlined, and low-carbon energy industry development
[68].

From the vantage point of technological progress, digitalization
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underpins the transition of both the economy and society towards
digitization, intellectualization, and low-carbonization facilitated by
cutting-edge digital technologies. On the one hand, digital, operational,
and electrical technology convergence engenders novel energy devel-
opment models and business paradigms, such as comprehensive intel-
ligent energy services and virtual power plants. The fusion of watt-flow
and bit-flow propels the shift from the traditional linear production
chain model to a networked collaborative parallel mode [69]. This
transition empowers the energy sector to optimize resource allocation
and enhance CP. On the other hand, digital technologies are intricately
interwoven with the energy production cycle, encompassing generation,
transmission, distribution, storage, and utilization. Through mecha-
nisms like carbon footprint monitoring, carbon data analysis, and
carbon-neutral deductions, digitalization offers substantial advantages
for bolstering the green transformation of production, consumption, and
end-user governance [70]. This, in turn, mitigates carbon emissions
without compromising economic output. Consequently, this paper posits
Hypothesis 1.

Hypothesis 1. ED can directly promote CP.

3.2. Indirect effect of ED on CP

When energy is included in the endogenous economic growth model,
the Cobb-Douglas production function for the final production sector
can be expressed as Y = A K% o [? ¢ E°. Here, A is technological prog-
ress, K. L and E refer to the capital, labor, and energy, and a. b and c
indicate the share of each factor, respectively. Meanwhile, the emission
of carbon dioxide C can be described as the product of carbon emission
coefficient 7 and fossil energy consumption Es: C = 7  Ef [71]. Accord-

ing to the LMDI model, CP is split into three parts: £ = Téf =Tx % x %" =

eff x estru x etech. Where £ indicates carbon productivity, eff represents
1

energy utilization efficiency, estru refers to the energy structure, % =1"
relies on the energy technology progress etech. Based on the above
decomposition, this paper will analyze the influence mechanisms of ED
affecting CP through energy technology, energy structure, and energy
utilization efficiency.

3.2.1. The mediating role of energy technology innovation

Li et al. [72] noted that energy technology innovation seeks to
develop new energy sources while simultaneously promoting the con-
servation and purification of fossil energy. Numerous studies have
underscored the role of energy technology innovation in reducing
pollution and enhancing CP [73,74]. Within this study, we contend that
the unique advantages of digitalization within the platform ecosystem
can foster a conducive ecological environment for energy technology
innovation. Equipped with a robust innovation-oriented function, digi-
talization continuously elevates the caliber of energy technology inno-
vation, expediting CP. To begin with, the advantages of digitalization in
information collection, matching, and analysis can transcend temporal
and spatial limitations on disseminating non-material resource elements
such as information and knowledge. Reducing information tracking
costs and mitigating information asymmetry provide the foundational
prerequisites for energy technology innovation [75]. Secondly, digita-
lization amplifies the competitive market dynamics for energy enter-
prises. Drawing from signal theory, the exigent external environment
fosters competition among energy firms striving for “green and smart
energy.” This competition serves as a stimulus for the output of energy
technology innovation [44] and propels the adoption of green technol-
ogy, thereby driving CP to a certain extent. Lastly, the network platform
attributes inherent in digitalization facilitate the establishment of an
innovation cooperation network among the energy industry, research
institutions, and universities and cultivate an innovation ecosystem
spanning production, consumption, and government sectors. This link-
age between innovation output and application enhances the
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sustainability and relevance of energy technology innovation.

3.2.2. The mediating role of energy structure

Renewable energy sources are widely recognized for their environ-
mental friendliness and low carbon footprint. The transition towards a
cleaner energy structure dominated by renewable sources holds the
potential to mitigate the adverse environmental externalities associated
with fossil fuels and generate substantial positive externalities. This
transition reduces carbon intensity and fosters CP [76]. The broad
technological advancements and innovations associated with digitali-
zation play a pivotal role in dismantling the barriers within the new
energy industry, thereby expediting the shift towards a cleaner energy
structure and enhancing CP [77]. On the supply side, integrating digital
technology with new energy technologies optimizes various facets of the
new energy sector, including construction, operations and maintenance,
power generation, and energy storage. This optimization contributes to
the sustainability, stability, and predictability of new energy generation
[78], thereby propelling the growth of new energy. For instance, digital
technologies enable the aggregation of distributed energy sources like
wind and photovoltaic power into virtual power plants, facilitating
multi-energy complementarity and flexible distribution. On the demand
side, integrating digital technology within New Energy Vehicles (NEVs)
has given rise to multiple functions such as intelligent driving,
networking, and sharing. These functions enhance user convenience,
efficiency, and safety, resulting in heightened consumer demand and
expanding the application scale of new energy sources. Regarding the
alignment of supply and demand, the fusion of artificial intelligence
technology and algorithmic models enables efficient management and
precise matching of energy supply from generation to demand. This
addresses the consumption and storage challenges associated with
renewable energy, thereby expediting the transition from traditional
power generation to new energy generation [79].

3.2.3. The mediating role of energy utilization efficiency

Energy utilization efficiency is paramount to achieving CP with
maximum economic benefits and minimal energy consumption [80].
Digitalization gives rise to an energy interconnection paradigm under-
pinned by platforms and driven by intelligence, optimizing energy ef-
ficiency across the entire spectrum, from power generation to electricity
consumption. On the one hand, Energy Digitalization amalgamates
electricity technology with digital technology, sparking a new era of
managing energy at the terawatt level. This breakthrough bridges the
gap between each node in the “power generation - transmission - dis-
tribution - storage — utilization” process, ushering in digitalization and
intellectualization of the entire energy chain. Consequently, this im-
proves the efficiency of power generation, operation, maintenance, and
utilization.

On the other hand, ED transitions from supply-oriented large-scale
production to user-driven customized production. This shift signifi-
cantly enhances the efficiency of supply-demand matching, leading to
energy-saving effects [81] and a notable improvement in energy utili-
zation efficiency. In light of these considerations, we posit the following
assumption.

3.3. Threshold effect of ED on CP

Metcalfe’s Law suggests a potential nonlinear relationship between
Energy Digitalization and regional CP [82]. In essence, the impact of
digitalization may exhibit variations among provinces, particularly
given China’s marked regional disparities in development. With this
perspective in mind, we aim to comprehensively examine the external
factors shaping digitalization, encompassing the regulatory roles played
by the market, government, and digital infrastructure.

3.3.1. The regulatory role of market adjustment
Marketization is recognized as a pivotal external institutional factor
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acting as a “catalyst” for the low-carbon economy effect of Energy
Digitalization [83]. This effect is multifaceted. Firstly, a more mature
factor market facilitates the seamless integration, synergy, and evolution
of data factors with traditional factors. This expedites the process of
capitalizing on data and unlocks the dividends of data factors [65].
Consequently, the energy sector becomes intricately entwined with the
digital economy, amplifying the low-carbon economy effect of ED.
Secondly, a heightened emphasis on product marketing often coexists
with a more competitive external business landscape. This competitive
pressure not only compels enterprises to engage in technological inno-
vation but also stimulates the efficient allocation of resources driven by
profit motives. Consequently, the digitalization process accelerates,
enhancing green productivity. However, it is imperative to acknowledge
that economies with less market-based systems may experience imma-
ture market mechanisms. This imbalance between government regula-
tion and market adjustments can impede the flow of production
materials, hinder the adoption of digital technologies, and disrupt
market competition [84]. Consequently, this limitation can curtail the
beneficial impact of ED on CP.

3.3.2. The regulatory role of environmental regulation

The concept of the weak Porter hypothesis posits that moderate
environmental regulation can foster innovation revolutions. In cases
where regional environmental regulation strikes an appropriate balance,
it can give rise to what is known as an “innovation compensation effect”
[85]. This effect stimulates innovation in low-carbon and digital tech-
nologies, propelling digitalization and low-carbon transformation
within the energy industry, consequently positively impacting CP.
However, overly stringent environmental regulations can lead to what is
termed an “innovation extrusion effect” [86]. Such regulations increase
the cost of pollutant emissions, thereby tightening the financial con-
straints on digitalization. This hindrance impedes the adoption and
dissemination of digital technologies within the energy sector, limiting
the full potential of Energy Digitalization to enhance CP.

3.3.3. The regulatory role of digital infrastructure

Digital infrastructure can be likened to fertile “soil” for digitalization
[11]. It represents the convergence of cutting-edge Information and
Communication Technology (ICT) with traditional infrastructure, giving
rise to various digital platforms for businesses and government opera-
tions. This synthesis combines the conventional infrastructure’s public
service attributes with the data-driven qualities of digitization, intelli-
gence, and networking. Regions with advanced digital infrastructure,
including technologies such as 5G networks, cloud computing platforms,
and artificial intelligence, boast a robust array of intelligent tools and
technological resources. This fosters the efficient flow of information
and resources within these areas, enabling a profound penetration of
digital technology into the energy sector. Consequently, ED exerts a
more pronounced impact on CP in these regions. In contrast, regions
lacking adequate digital infrastructure cannot provide a conducive
technical environment for digitalization [87]. This limitation diminishes
the influence of ED on CP within these areas.

3.3.4. The regulatory role of resource dependence

In line with the resource curse hypothesis, regions with high resource
dependence tend to be dominated by resource exploitation and pro-
cessing industries characterized by high energy consumption and
pollution [88]. Over time, these areas often develop a rigid and exten-
sive economic model, making transitioning toward an improved CP
challenging. Moreover, the persistence of natural resources in
resource-based regions can crowd out high-end factors such as tech-
nology and human capital [89], hampering regional disruptive inno-
vation and digital transformation efforts, thereby making it difficult to
demonstrate the carbon reduction effect of digital transformation.
Conversely, regions with low resource dependence experience more
significant constraints related to resource endowments in their
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economic development models. This implies greater flexibility in the
flow of factors and changes in industrial structure, ultimately facilitating
a more positive impact of digital transformation on CP. Consequently,
we propose Hypothesis 3.

Hypothesis 3. The impact of ED on CP is regulated by the market,
government, digital infrastructure, and resource dependence. The pos-
itive effect is more remarkable under a higher marketization degree,
moderate environmental regulation level, advanced digital technology
facilities, and weaker resource dependence.

3.4. Spatial effect of ED on CP

As a result of the sharing and permeability of digital technology,
critical resources like technology and knowledge have been freed from
geographical constraints and industry-specific barriers, leading to the
superposition effect of “mobile space” and “mobile industry.” Conse-
quently, it is anticipated that the positive impacts of ED on the low-
carbon economy will extend beyond individual regions. Scholars have
previously explored the spatial effects of digitalization on both carbon
emissions and economic outcomes separately [54,90]. This paper posits
that ED can benefit CP in neighboring regions through two mechanisms:
interregional low-carbon technology spillover and the strategic coordi-
nation of digital transformation. On the one hand, following Marshall’s
theory of externalities and Romer’s model of knowledge spillover
growth [91], it is understood that technology possesses externalities and
can spill over to neighboring regions. Through digital technology, ED
can potentially empower low-carbon technology innovation in
geographically adjacent areas by expediting the flow of innovation
factors across time, thereby laying the technical groundwork for
collaborative CP improvement.

On the other hand, as energy companies within a region increasingly
adopt ED practices, they may serve as a source of demonstration and
peer effects for energy firms in neighboring regions, inspired by the
positive feedback related to environmental and economic performance
[92]. Driven by information dissemination, competitive emulation, and
value internalization, energy enterprises in nearby regions are likely to
implement their digital strategies, ultimately highlighting the
low-carbon economic benefits of digitalization. Consequently, we pro-
pose the final hypothesis.
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Hypothesis 4. ED can exert a beneficial effect on CP in external
regions.

To sum up, Fig. 1 presents the diagram of the theoretical model, and
Fig. 2 displays the diagram of the theoretical framework in this paper.

4. Methodology
4.1. Model construction

Constructing appropriate models is crucial to test the four hypothe-
ses outlined earlier empirically. Based on relevant literature, we have
chosen specific models to examine the multidimensional impact of en-
ergy digitalization on CP. The literature-based rationale for our model
selection is summarized in Table 1. We observe that in the field of
research on digitalization, the low-carbon economy, and green devel-
opment, scholars have focused on various aspects, including direct ef-
fects, indirect effects, nonlinear effects, and spatial effects. Regarding
direct effects, applying the two-way fixed effects model is predominant,
with some scholars employing IV-2SLS and GMM to address endogeneity
concerns. Accordingly, this paper constructs a fixed effect model com-
bined with the instrumental variable method to test the direct effect
proposed in H1.

Regarding indirect effects, existing research utilizes mediating effect
models based on two-stage or three-stage regression methods. These
mediating variables encompass industrial structure, technological
innovation, and energy intensity. Therefore, we adopt a three-stage
stepwise regression-based mediating effect model to rigorously assess
the indirect effect posited in H2, supported by mathematical evidence.
Furthermore, it is evident that previous research primarily employs
threshold panel models to investigate nonlinear effects. These models
operate on the idea that when a specific economic parameter reaches a
certain threshold, another economic parameter undergoes a structural
break. The critical value for this transition is termed the threshold value.
As such, we employ a threshold regression model to examine the
nonlinear effect postulated in H3. To evaluate spatial effects outlined in
H4, we construct a spatial econometric model, as widely applied by most
scholars in the field. This model introduces a spatial weight matrix and
spatial correlation coefficient, allowing us to determine the elasticity
coefficients of variables within geographical space.

Energy
digitization

Carbon
productivity

L e
A A A A
L Environmental Digital Resource
Marketization . .
regulation infrastructure dependence

Fig. 1. The diagram of the theoretical model.
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Fig. 2. The diagram of the theoretical framework.
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4.1.1. Benchmark model

This article integrates energy digitalization into the research
framework of CP to test hypothesis 1 and establishes baseline models
using pooled ordinary least squares (POLS), random effects (RE), and
fixed effects (FE). The equation is as follows:

cpi = o + ayenerdig; + arfdi;, + assize; + aucity, + asins;, + agtrans; + A;
+ €&
(@)

Where them, cp; is considered as the explained variable, presenting the
carbon productivity of region i during the period of ¢, enerdig;; expresses
the degree of energy digitalization. Control variables cover foreign
direct investment fdiy, the scale of industrial enterprise size;, the level of
urbanization city;, industrial structure ins; and the level of trans-
portation infrastructure trans;. In addition, ay is the intercept term, «, is
the parameter to be estimated, 4; refers to the unknown individual ef-

fects and ¢; indicates the random error.

4.1.2. Mediation effect model

To examine hypothesis 2, mediation effect models are further con-
structed. Following the approach outlined by Wen and Ye [99], a
three-step regression model is developed as the benchmark.

mediation;, = f, + fB,enerdig, + p, Xy + A + € (2)

cpi = Wy + wyenerdig;; + wymediation;, + w,X; + A; + €; 3
Where, mediation; is selected as energy technology innovation
(enerinno), energy structure optimization (enerstru), energy utilization
efficiency (enereffi); f, and wo are intercept terms; $; and w; indicate the
parameters to be estimated; f,, and w, refer to the parameter vectors to
be estimated. X;; contains a variable group formed by a series of control
variables in Formula (1). The other parameters are the same as above.
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Table 1
Literature basis for model building.
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Topic

Effects Type

Sample

Model

Variables

Digitalization and carbon emissions

Direct effect

30 provinces in China from 2006 to

[52] Indirect 2019
effect
Digital economy and carbon emission Indirect 274 prefecture-level cities and above
[54] effect in China from 2011 to 2018

Digital economy and carbon emission
[93]

Digitalization and total factor carbon
performance [94]

Digitalization and carbon emissions
[95]

digital finance and green development
[96]

Digitalization and green development
[47]

Digital economy and sustainable
development [97]

Digital transformation and total factor
carbon productivity [62]

Spatial effect
Direct effect
Indirect
effect

Direct effect
Indirect
effect

Direct effect

Direct effect
Indirect
effect
Threshold
effect
Direct effect
Indirect
effect
Spatial effect
Threshold
effect
Direct effect
Indirect
effect
Threshold
effect
Direct effect
Threshold

60 countries from 2008 to 2019

274 prefecture-level cities and above
in China from 2003 to 2019

55 countries from 1996 to 2019

238 prefecture-level cities in China
from 2012 to 2021

278 cities in China from 2011 to 2019

286 cities in China from 2011 to 2019

30 provinces in China from 2009 tp
2019

Fixed effect model +
IV-2SLS

Mediating effect model
Spatial Durbin model
Mediating effect model

Double fixed effects
model + GMM
Mediating effects
model

Double fixed effects
model

Single step regression
Fixed effects model +
OLS

Fixed effect model
Mediation effect model
Threshold regression
model

Fixed effect model
Mediating effect model
Spatial Durbin model
Threshold panel model

Fixed effect model +
IV-2SLS

Mediating effect model
Threshold panel model

Fixed effect model
Threshold regression

Intermediate variable :

Energy structure,

Industry structure, technology innovation
Intermediate variable :

Energy use, green technology progress, industrial
structural upgrade

Intermediate variable :

Economic growth, industrial structure, financial
development

Intermediate variable :
Industrial structure, green technological
innovation, energy efficiency

Intermediate variable : green technology
innovation
Threshold variable : digital finance

Intermediate variable : economic openness,
industrial structure, market potential
Threshold variable : economic openness,
industrial structure, market potential

Intermediate variable : green technological
innovation, human capital
Threshold variable : environmental regulation

Threshold variable:
Technological innovation

effect
Spatial effect
Threshold

Trade fdi and CO2 emissions [98]
1970 to 2019

18 Latin American countries from

model
Spatial Durbin model, -

4.1.3. Threshold regressive model

To provide evidence for Hypothesis 3, we construct the threshold
regression model proposed by Hansen [100]. In the model, marketiza-
tion (market), environmental regulation (regulation), digital infrastruc-
ture (diginfra), and resource dependence (ependence) are taken as
heterogeneous variables. The econometric model is established as
follows:

cpi =6 + Oy enerdig;, x 1(threshold, <n) 4

+ Osenerdig, x I(threshold;, >n) + 0,X; + € )
Where 6, is the intercept term; ¢, and ¢, indicate the parameters to be
estimated; 6, refers to the parameter vectors to be estimated; threshold;
is the threshold variable set in this paper; 7 is the value of the single
threshold. I(e) represents the indicator function. The other parameters
are the same as above.

4.1.4. Spatial econometric model
Regarding hypothesis 4, we introduce the SDM, and the formulation
is as follows [101]:

cpi =7y +pW X lcd;, + y enerdig, + &, W x enerdig;, + v, Xi + E,W X X;
+ /’lh
5)

Where y, is the intercept term, p represents the spatial autoregressive
coefficient, y; and &, indicate the parameters to be estimated; y, and &,
refer to the parameter vectors to be estimated. W represents the spatial
weight matrix. Since neither geographical distance nor economic dis-
tance alone can fully depict the genuine dependency relationship of
spatial units, this paper adopts the spatial weight matrix of economic

geographic distance regarding Yang et al. [102]. W x lcd;; and W x
enerdig; Two different interaction effects in spatial metrology are rep-
resented: the endogenous interaction effect and the exogenous interac-
tion effect. The other parameters are as previously described.

4.2. Variable selection

4.2.1. Dependent variable

Carbon productivity (cp). Some scholars use the carbon emission
index as a proxy variable for low-carbon development, while others
create complex index systems to measure it. However, the former
approach overlooks the non-decoupling relationship between carbon
emissions and economic benefits at the current technological level, and
the latter can lead to conflicting results due to the diversity and
complexity of index selection. In essence, developing a low-carbon
economy revolves around improving CP [103]. Therefore, this paper
aims to construct a multidimensional input-output index system to
measure regional CP from an efficiency perspective. To address the
“slack” or “crowding” of input elements, this paper employs the
Super-SBM-DDF model, which can measure unexpected output related
to environmental pollution. We create an output-oriented Malmquis-
t-Luenberger productivity index using MAX DEA Pro software, assuming
constant returns to scale. The following input and output indicators have
been selected based on the practices of Han et al. [62], as shown in
Table 2.

4.2.2. Key independent variable

Energy digitalization (enerdig). Some are crucial aspects of this study.
Various scholars have adopted different approaches to measure digita-
lization levels in industries and regions. Some have constructed multi-
dimensional indexes considering digitalization input, application, and
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Table 2
The input and output indicators.
Variable Indicator Calculation
Input Human capital Quantity of employment

Fixed asset investment
Total energy consumption
Real GDP

CEADs

Physical capital

Energy input

Economic benefit
Carbon dioxide emission

Desired output
Undesired output

output, while others have focused on measuring regional digitalization
based on internet development and digital technology indicators.
Additionally, some researchers have employed text analysis of corporate
annual reports to estimate the level of digital transformation among
micro-level entities. However, these measurement methods have their
limitations. Firstly, the strong permeability of digital technology makes
it challenging to assess the degree of digitalization in a specific industry
accurately. Secondly, the level of digitalization extends beyond just the
development of digital technologies [104]. Furthermore, methods that
rely on text word frequency analysis can only represent the intention
and actions of enterprises in their digital transformation efforts, failing
to capture the overall digital scale of an industry.

We believe that energy digitalization goes beyond merely the digi-
talization of the energy industry or the widespread use of digital tech-
nology in a region. It involves creating a green and efficient energy
system through the coordinated development of digitalization in the
energy industry and digital industrialization. Achieving this goal ne-
cessitates substantial digital investment support from the industry and
proactive digital strategy guidance from enterprises. Based on this un-
derstanding, we adopt the approach of “digital industry investment
support - digital transformation strategic guidance” to construct the
Energy Industry Digital Transformation Index (ED) as follows:

enerdig;, = diginput;, x digstrategy; (6)

Where diginput;; refers to the digital input in the energy industry, rep-
resented by the relative consumption coefficient of digital input in the
energy industry, as shown in the provincial 42 Departmental input-
output tables [105]. Compared to the direct consumption coefficient,
the relative consumption coefficient better reflects the importance of the
target intermediate input in the production process of a specific in-
dustry. Below is the calculation formula.

ay =% @)
Xj
ag=" dck )
J -xj ’
a
bju=— = )
> ap

Where aj is the direct consumption coefficient of the energy industry j to
the intermediate sector k, xj indicates the actual consumption of in-
termediate sector k in the production process of the energy industry and
X;j represents the total output of the energy industry. Similarly, the paper
constructs the direct consumption coefficient of the energy industry to
the digital industry sector d. According to the “Statistical Classification
of Digital Economy and Its Core Industries (2022)", digital industries
include electrical machinery and equipment, communication equip-
ment, computers, and other electronic equipment, as well as information
transmission, software, and information technology services. The ratio
of ajq to the sum of the direct consumption coefficients of all sectors is
obtained as the target value.

Additionally, digstrategy; in formula (6) represents the propensity of
micro-level entities towards digital transformation. Drawing from the
methodology employed by Zhang et al. [13], this study conducts a
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quantitative analysis of word frequencies related to ‘“digitalization”
within the annual reports of energy enterprises. The data processing
involves a four-dimensional approach encompassing securities code,
word frequency, province, and year to ascertain the extent of energy
digitalization across different provinces. The specific procedure is
delineated into five steps: @ Screening of Energy Enterprises: Distinct
from sectors like manufacturing and finance, the energy industry lacks a
precise delineation, and statistical data regarding energy enterprises in
China is fragmented. Consequently, drawing insights from prior
research [61,106], we adopt a comprehensive approach to identify
publicly listed energy enterprises based on industry classifications
within both the national economic framework and the Wind Financial
Terminal database. This approach ensures the inclusion of the entire
energy industry spectrum, encompassing upstream energy extraction,
midstream energy chemicals, and downstream commercial consump-
tion, thereby facilitating a more thorough estimation of the degree of
energy digitalization. @ Mining of Enterprise Annual Reports:
Leveraging machine learning techniques, this study extracts text content
from the annual reports of energy companies spanning from 2012 to
2021. The extraction process is conducted using Python programming.
@® Construction of the Lexicon “Energy Digitalization”: Building upon
prior research endeavors [92,107], this study establishes a lexicon
relevant to energy digitalization. The lexicon comprises two primary
dimensions: the technology base and application practice layers. The
technology base layer encompasses phrases such as artificial intelligence
technology, big data technology, cloud computing technology, and
blockchain technology. In contrast, the application practice layer in-
corporates phrases such as intelligent energy, virtual power grid, energy
Internet, smart power grid, and distributed energy. ® Matching the
Lexicon with Annual Report Texts: To quantify the degree of energy
digitalization within the annual reports, the text content is meticulously
matched against the predefined lexicon. This matching process is facil-
itated using the Jieba dictionary in the Python programming language,
thereby generating word frequency counts related to energy digitaliza-
tion. ® Calculation of Regional ED Degree: By incorporating securities
code, word frequency, province, and year as critical variables, this study
derives aggregated summaries of word frequencies and the total number
of energy enterprises within each geographical region. Subsequently,
the regional ED degree is computed by applying a logarithmic trans-
formation to the word frequency per unit enterprise.

4.2.3. Mechanism variables

@ Energy technology innovation (enerinno). This category encom-
passes innovations related to both fossil energy enhancement and
renewable energy development, as observed in prior research [108,
109]. Building on the methodology employed by Li et al. [72], this study
employs the number of patent applications for both types of energy
technology as a comprehensive proxy for enerinno.

® Energy structure optimization (enerstru). The 14th Five-Year Plan
for Modern Energy has outlined an ambitious target for China, aiming to
achieve a non-fossil energy contribution of approximately 39% in power
generation by 2025. The enhancement of clean energy consumption and
its electricity generation plays a fundamental role in achieving this en-
ergy structure optimization goal [110]. While no authoritative data
regarding clean energy consumption in China exists, this study, in line
with the approach adopted by Destek and Aslan [111], employs the
proportion of non-fossil energy generation as an indicator to charac-
terize energy structure optimization.

® Energy utilization efficiency (enereffi). Measuring the economic
benefits of each energy consumption unit, energy utilization efficiency is
commonly represented by GDP per unit of energy consumption [43,
112].

4.2.4. Threshold variables
® Marketization (market). The regional external institutional envi-
ronment is characterized using the marketization indicator developed
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by Fan et al. [113]. This indicator encompasses five key dimensions: the
development of a non-state-owned economy, the government-market
relationship, product market conditions, intermediary organizations,
and factor market characteristics. Additionally, necessary adjustments
have been made to the marketization index to ensure data comparability
across the period from 2012 to 2021 [114].

@ Environmental regulation (regulation). Regulatory efforts are
quantified by the ratio of completed investment in industrial pollution
control to the secondary industry’s added value, following the approach
proposed by Zhang et al. [103].

® Digital infrastructure (diginfra). The digital infrastructure is
assessed based on a comprehensive indicator system, incorporating el-
ements such as Internet penetration (the proportion of Internet users in
the resident population), telephone penetration (total number of tele-
phones/Total population of administrative area x 100), length of long-
distance cable lines, the number of Internet domain names, and broad-
band access [oT ports, as adopted by Pan et al. [115] and Chen [92]. The
digital infrastructure index is ultimately calculated using the entropy
method. The steps of the entropy method are as follows:

a Standardization of indicators Z;y,.

Zim — MU (Zipy Zomy ++ -5 Z30m)
+ im ) 3ty
Z, = - (10)
MAxX(Zims Zoms -++5 Z30m) — MR (Zims Zams -+ Z30m)
- _ max(Zl/m 2om>y ---7Z30m) — Zim (11)
" max(Zums Tams -+, Z3om) — MR (Zim, Zam, -+ -5 Z30m)

In order to avoid the unbalanced distribution caused by excessive dif-
ference in index values, the data are standardized. In the above formula,
Z} and Z; respectively refer to the positive and negative indicators
after standardized processing, z;, represents the original value of indi-
cator m of province i. m represents the five secondary indicators of
digital infrastructure.

b The measure of information entropy Epn,.

1 0 Zim Z[m
E,,,:lng E m eln m (12)
A Y Zim > Zim
i=1 i=1

Information entropy reflects the different information content of the
same index, which can effectively avoid the influence of subjective
factors in weight setting.

¢ Calculation of indicator weights Py,.

(1 - Ern)

P,= (13)

M

(1 - Em)

j=1

According to the information entropy of each index, its weight is
calculated.

d Calculation of the composite index diginfra.

diginfra = Zi,zlpm ®Zim a4

Based on the standardized value Z;, of each indicator and the weight
P, of each indicator, the multi-objective linear weighting function
method is used to calculate the digital infrastructure level (diginfra) at
the provincial level from 2012 to 2021.

@ Resource dependence (dependence). Resource dependence is
gauged by the ratio of employment in the regional extractive industry to
that in the manufacturing industry.

10
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4.2.5. Control variables

In addition to energy digitalization, several internal and external
factors can influence CP. Building upon existing research [116-118], we
incorporate a series of control variables to account for these factors.
These variables include MForeign direct investment (fdi). fdi can impact
CP through pollution transition and knowledge spillover effects. We
measure it using the proportion of foreign direct investment to GDP;
@Industrial enterprise size (size). The size of industrial enterprises is
closely linked to their operational and production efficiency, potentially
influencing CP. It is calculated as the share of industrial output value
relative to the number of regional enterprises; ®Urbanization (city). The
urbanization process often involves population migration, factor
agglomeration, and urban infrastructure development, which can affect
economic growth and environmental pollution. We use the percentage
of the urban permanent population to quantify urbanization; @Indus-
trial structure (ins). The industrial layout and structure are crucial in
determining the economic growth mode and can impact CP. We measure
it as the ratio of tertiary industry output to secondary industry output;
®Transportation infrastructure (trans). Trans has a dual impact on CP.

On the one hand, it can enhance regional transportation conditions,
facilitating the flow of resources and boosting low-carbon innovation
and production efficiency. On the other hand, it may increase automo-
bile exhaust emissions and fossil energy consumption. We estimate this
variable using the ratio of total highway mileage to the total population.

In summary, the measurement and indicator sources of relevant
variables in this paper are shown in Table 3.

4.3. Data source and descriptive statistics

We have selected 30 mainland Chinese provinces as the subjects of
our study and collected panel data spanning from 2012 to 2021. Our
data sources encompass regional CO, emissions data from CEADs
(Carbon Emission Accounts & Datasets), which provide a more
comprehensive view of regional carbon emissions by accounting for
emissions from energy combustion and production processes, covering
47 economic sectors, the combustion of 17 fossil fuels, and cement
production [119]. We have also gathered data on energy technology
innovation from the Shanghai Intellectual Property (Patent) Public
Service Platform, as outlined in Li et al. [72]. Non-fossil energy gener-
ation data were sourced from the China Electric Power Statistical
Yearbook, while energy consumption data were compiled based on the
China Energy Statistical Yearbook. Marketization index data were
calculated and adjusted comparably using China’s Marketization Index
Report by Province (2021) [120]. Additionally, we included other data
primarily obtained from the China Regional Economic Database and EPS
global statistics. Furthermore, we have confirmed no multicollinearity
issue among the variables, and specific descriptive information can be
found in Table 4.

Fig. 3 presents geographical heat maps illustrating the mean regional
values of low-carbon economy development and energy digitalization
throughout the sample period. Darker colors indicate higher values. The
distribution of regional low-carbon economy development exhibits
noticeable spatial clustering rather than a uniform pattern. Provinces
such as Beijing, Guangdong, Jiangsu, Fujian, Zhejiang, and Sichuan
demonstrate relatively favorable low-carbon economic development,
while Xinjiang, Qinghai, Gansu, Ningxia, and Inner Mongolia have
lower values. Beijing’s commendable performance in low-carbon eco-
nomic development is noteworthy. In recent years, Beijing has consis-
tently emphasized carbon governance through policy and technological
advancements, achieving impressive results and establishing itself as a
leading province in China’s low-carbon economic development.
Regarding regional energy digitalization, eastern China displays the
darkest colors, indicating a high level of digitalization, while central
China exhibits lighter colors. The eastern region’s rapid digital industry
growth, solid digital technology foundation, and advanced digital
infrastructure contribute to its higher level of digitalization. In contrast,
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Table 3
Variable declaration.
Type Variable Measurement Source
Dependent Carbon productivity (cp) Malmquist-Luenberger productivity index China Regional Statistical Yearbook
variable China Energy Statistical Yearbook

Key independent
variable

Mechanism
variables

Threshold
variables

Control variables

Energy digitalization (enerdig)

Digital input in the energy industry
(diginput)

Willingness of micro-entities for digital
transformation (digstrategy)

Energy technology innovation
(enerinno)

Energy structure optimization (enerstru)
Energy utilization efficiency (enereffi)

Marketization (market)
Environmental regulation (regulation)

Digital infrastructure (diginfra)

Resource dependence (dependence)

Foreign direct investment (fdi)
Industrial enterprise size (size)
Urbanization (city)

Industrial structure (ins)
Transportation infrastructure (trans)

enerdigy = diginput; x digstrategy;
Relative consumption coefficient

Word frequency statistics based on natural language
processing

The number of patent applications for “non-fossil energy”
and “energy conservation and emission reduction"

The proportion of renewable energy generation
GDP/Energy consumption

Marketization index

Completed investment in industrial pollution control/
added value of secondary industry

Entropy method

Employment in extractive industries/employment in
industry

foreign direct investment/GDP

industrial output value/the number of regional enterprises
urban permanent population/total population

the tertiary industry output/the secondary industry output
total highway mileage/total population

CEADS

Departmental input-output table

Corporate annual report

Provincial 42 departments input-output table
(Published at the National Bureau of Statistics)
M&A text in annual reports of listed energy
companies (Reptile technique by Python)
Shanghai Intellectual Property (patent) public
service platform

China Electric Power Statistical Yearbook
China Regional Statistical Yearbook

China Energy Statistical Yearbook

Fanetal. [113]

China Regional Statistical Yearbook

China Electronic Information Industry Statistical
Yearbook

EPS global statistics

EPS global statistics

EPS global statistics

China Regional Economic Database
China Regional Economic Database
China Regional Economic Database
China Regional Economic Database

energy power generation, improving digitalization levels to some extent.
Notably, Shanxi, a province rich in coal resources, demonstrates a low

degree of digitalization. This observation underscores the challenges the

fossil energy industry faces in achieving digitalization, which involves
constraints related to technological progress and economic development

Table 4
The descriptive statistics of variables.
Variable Obs Mean Std. Dev. Min Max
P 300 0.853 0.235 0.578 2.549
enerdig 300 2.692 0.816 0.251 4.382 that require careful consideration.
fdi 300 1.638 1.473 0.039 9.142
size 300 0.990 0.343 0.411 2.118 .. . .
city 300 0.582 0121 0.350 0.896 5. Empirical results and discussion
ins 300 1.218 0.691 0.518 5.169
trans 300 0.027 0.020 0.003 0.104 5.1. Results of direct effects

western regions, although not technologically advanced, face significant
pressure regarding new energy distribution and power generation. This
pressure drives the extensive integration of digital technology and new

Wi

;

South China Sea Islands

(a)
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5.1.1. Baseline regression analysis
As shown in Table 5, the methods of POLS, RE, and FE are used in this
study to estimate the low-carbon economy effects of ED. Among them,

B

South China Sea Islands

(b)

Fig. 3. Distribution maps of the acp (average value of CP) (a) and aenerdig (average value energy digitalization) (b).
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columns (1), (3), and (5) only contain the core explanatory variable ED,
while columns (2), (4), and (6) include all the control variables. All
results show positive impact coefficients between core variables, vali-
dating hypothesis 1; that is, ED can promote the CP directly. Addition-
ally, when control variables are included, the model’s goodness of fit
increases significantly, manifesting the rationality of variable screening.
Further, according to the Hausman test, we will focus on the column (6).
Regional CP will increase by 0.112 units for every ED unit increase.
From a micro perspective, ED reconstructs the structure of traditional
production factors and production links with data elements and triggers
the intensive transformation of production mode, thus improving green
productivity. From a meso perspective, ED reshapes the industrial or-
ganization forms through the networked platform and forms a widely
interconnected ecological community, thus promoting the clean devel-
opment of the energy industry. From a macro perspective, ED realizes
carbon monitoring and feedback of all links of the energy value chain
through integrating digital technology, operation technology, and
electricity technology, thus boosting the economy’s and society’s
intelligent and green development. Moreover, regarding variables, for
every unit increase in the size of industrial enterprises, regional low-
carbon economic development will increase by 0.768 units. Schum-
peter’s innovation theory [121] has emphasized that firm size is pro-
portional to innovation. We suspect that although large enterprises will
produce more pollution due to large-scale production, they have a
greater advantage of low-carbon economic contribution supported by
advanced technological innovations in emission reduction. The indus-
trial structure can spur CP with a coefficient of 0.654, which is signifi-
cant at the 5% level. Similar to Zhao et al.’s findings [122], the advanced
development of industrial structure contributes to eliminating
energy-intensive industries, optimizing the energy consumption struc-
ture, and stimulating green technology innovation, thereby promoting
CP.

5.1.2. Endogenous analysis

Previous studies have suggested that low-carbon development can
stimulate digitalization [92]. Therefore, it is essential to consider the
possibility of reverse causality between ED and CP. Additionally, given
the multitude of factors influencing CP, there may be missing variables,
and the empirical results may be subject to unobservable factors. To
address these concerns, we employ the instrumental variable method for
model estimation.

We initiate the analysis by conducting the robust Durbin-Wu-
Hausman (DWH) test to examine the endogeneity of the model. The
test results yield a statistic value of 32.798, with a corresponding P-value
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of 0.000, indicating the presence of an endogeneity issue in the ED. We
select two instrumental variables in light of two critical conditions for
instrumental variables—correlation with endogenous variables but no
correlation with random disturbance terms. @ The degree of topo-
graphic relief ivl [43]: Regional topographic relief can impact the
installation of digital equipment and the transmission of digital infor-
mation, but it does not hadirectly affect CP. @ An interaction term be-
tween the number of post offices per million people in 1984 and the lag
term of industrial robot installation density iv2 [123]: The number of
post offices is historically linked to Internet penetration rates and
communication technology development. However, with technological
advancements, the role of post offices in modern society has diminished.
By multiplying this variable by industrial robot installation density, we
enhance its relevance to digitalization. It is important to note that the lag
term of industrial robot installation density has a weak correlation with
the current CP. The first two columns in Table 6 present the estimation
results of the two-stage least squares (2SLS) method. According to the
first-stage results, both iv1 and iv2 significantly enhance the level of ED,
confirming their strong relationship with the endogenous variable. In
the second-stage regression, the coefficient of enerdig is significantly
positive, providing compelling evidence for hypothesis 1. Furthermore,
the Cragg-Donald Wald statistic yields a value of 30.851, surpassing the
10% critical value of 19.930, affirming the effectiveness of instrumental
variable selection.

Considering the serial correlations of CP, we introduce its lag term L.
cp and apply GMM) to account for potential unobservable factors and
minimize model estimation bias. The last two columns in Table 6 present
the results of the system GMM model and the differential GMM. Both the
AR and the Hansen test results validate the appropriateness of GMM. It is
noteworthy that, even after addressing the endogeneity issue, ED con-
tinues to exhibit a significant positive impact on CP, reinforcing the
robustness of our findings for hypothesis 1.

5.1.3. Heterogeneity analysis
(1) Analysis of regional heterogeneity

Based on the division of geographical regions in China, this study
conducted a sub-sample heterogeneity test on four major regions of
China. The results, presented in Table 7, indicate that only in the eastern
and northeast regions does ED significantly impact CP. Notably, the low-
carbon economic effect of ED is most pronounced in the eastern region,
which aligns with the findings of Yi et al. [123]. This outcome can be
attributed to the eastern region’s more advanced digital technologies

Table 5
Results of baseline regression.
Variable (€D)] (2) 3) @ 5) 6)
POLS POLS RE RE FE FE
enerdig 0.407%** 0.106%** 0.320%** 0.104%** 0.317%** 0.112%*
(0.052) (0.020) (0.081) (0.039) (0.081) (0.051)
fdi 0.138%** 0.057 0.010
(0.042) (0.050) (0.041)
size —0.275%** 0.571** 0.768**
(0.033) (0.258) (0.282)
city 0.407%* 0.616 1.086
(0.161) (1.429) (1.460)
ins 0.698*** 0.607** 0.654**
(0.069) (0.290) (0.295)
trans —-0.134 —2.975 —14.160
(0.594) (6.282) (11.070)
constant —0.242 —0.470%** —0.001 —1.102%%* —0.000 —1.265*%*
(0.134) (0.117) (0.136) (0.386) (0.219) (0.489)
N 300 300 300 300 300 300
R? 0.204 0.666 0.349 0.612 0.349 0.630

Note: The significance levels of 0.10, 0.05, and 0.01 are represented by *, **
below.
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Table 6
Results of instrumental variable regression and GMM regression.
Variable @ ) [©)] (4
First stage Second stage System- Differential-
of 2SLS of 2SLS GMM GMM
enerdig 0.630%** 0.015* 0.097%**
(0.111) (0.008) (0.035)
ivl 0.258%*
(0.054)
2 0.173%**
(0.036)
L. CP 1.107%** 0.736%**
(0.011) (0.063)
constant —0.787* —1.483*** —0.044**
(0.426) (0.291) (0.018)
Control variables  Yes Yes Yes Yes
Time-fixed effect control control control control
Individual-fixed control control control control
effect
P value of DWH 0.000
test
F value of Cragg- 30.851
Donald Wald
P value of 0.100 0.879 0.515
Hansen test
P value of AR (1) 0.009 0.003
test
P value of AR (2) 0.734 0.265
test
N 300 300 270 240

and superior digital infrastructure conditions, which facilitate the
demonstration of the low-carbon economic effect of ED. In contrast,
despite having a higher carbon emission level due to coal burning, the
northeast region experiences a more evident effect of ED on carbon
reduction compared to the central and western regions. Given their
current economic development and digital technology levels, this un-
derscores the potential for high-energy consumption areas to contribute
to carbon peak and carbon neutrality efforts.

(2) Analysis of time heterogeneity

Based on the division of geographical regions in China, this study
conducted a sub-sample heterogeneity test on four major regions of
China. The results, presented in Table 8, indicate that only in the eastern
and northeast regions does ED significantly impact CP. Notably, the low-
carbon economic effect of ED is most pronounced in the eastern region,
which aligns with the findings of Yi et al. [123]. This outcome can be
attributed to the eastern region’s more advanced digital technologies
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and superior digital infrastructure conditions, which facilitate the
demonstration of the low-carbon economic effect of ED. In contrast,
despite having a higher carbon emission level due to coal burning, the
northeast region experiences a more evident effect of ED on carbon
reduction compared to the central and western regions. This underscores
the potential for high-energy consumption areas to contribute to carbon
peak and carbon neutrality efforts, given their current economic
development and digital technology levels.

5.2. Results of indirect effects

Table 9 presents the intermediary mechanisms through which ED
influences CP. Specifically, the first two columns employ a three-step
regression, utilizing energy technology innovation (enerinno) as the
intermediary variable. The results reveal that the impact coefficient of
ED on energy technology innovation is 0.137, which not only passes the
significance test with a p-value of 0.99 but also demonstrates statistical
significance. Furthermore, the elasticity coefficient of energy technology
innovation on CP is 0.263. Consequently, we can calculate that the in-
direct impact of ED on CP amounts to 0.036 (0.137 x 0.263), repre-
senting a substantial 32.171% of the total effect. Moving on to the
middle two columns, we explore the results when energy structure
optimization (enerstru) serves as the intermediary variable. Despite the
critical coefficients in the stepwise regression being non-significant, it is
vital to acknowledge the potential existence of a mediating effect, as
emphasized by Wen and Ye [99]. To validate this, we conducted Sobel
and Bootstrap tests, which yielded p-values of 0.000, indicating a partial
mediating effect of clean energy structure transition. This effect amounts
to 4.557% of the total impact. In the final set of columns (5) and (6), we
present the results of a three-step regression with energy utilization ef-
ficiency (enereff) as the intermediary variable. These findings demon-
strate that ED can indirectly influence CP through energy technology,
energy structure, and energy utilization efficiency. This comprehensive
support strongly validates hypothesis 2. In summary, our analysis in-
dicates that ED has a dual impact: a direct effect on CP and multiple
indirect effects mediated by crucial economic indicators. These findings
underscore the complex nature of the relationship between ED and CP.

5.3. Results of threshold effects

Table 10 reveals the findings from the threshold effect analysis. Upon
examining the p-values, it becomes evident that all four threshold var-
iables exhibit a single threshold effect without encountering a situation
of double thresholds. This observation further validates the first part of
hypothesis 3 in this study. For a clearer perspective, when the market-
ization level, environmental regulation intensity, digital infrastructure

Table 7 Table 8
Results of regional heterogeneity test. Results of time heterogeneity test.

Variable 1) 2) 3) 4) Variable 1) 2)
east central west northeast 2012-2015 2016-2021

enerdig 0.261%** 0.043 —0.038 0.034** enerdig 0.049%* 0.078**
(0.062) (0.062) (0.027) (0.014) (0.023) (0.038)

fdi —0.004 0.122 0.368%** —0.141%%* fdi 0.002 0.168%**
(0.033) (0.084) (0.075) (0.042) (0.017) (0.063)

size 0.942%** 0.532%** 0.246%** —0.008 size 0.385%* 0.613%**
(0.208) (0.183) (0.093) (0.034) (0.165) (0.104)

city —-1.918 5.146%** 0.343 3.737%%* city 1.363 -1.175
(1.209) (1.739) (0.856) (0.991) (0.936) (0.933)

ins 0.849%** 0.356 0.443%** —0.061** ins 0.711%** 0.743%**
(0.114) (0.215) (0.100) (0.023) (0.214) (0.081)

trans —17.600%* —35.850%** 7.306 —0.373 trans 8.846 —7.529
(7.620) (10.080) (11.690) (3.401) (7.428) (6.924)

constant 0.432 —2.029%** —0.684** —1.738%%* constant —1.4971%** —0.225
(0.649) (0.512) (0.330) (0.562) (0.430) (0.396)

N 100 60 110 30 N 120 180

R? 0.812 0.838 0.709 0.932 R? 0.510 0.580
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Table 9
Results of intermediary mechanism.
Variable m 2) 3) “ (5) 6)
enerinno CP enerstru Ccp enereffi CP
enerdig 0.137%** 0.076%* 0.022%* 0.107%** 0.124%** 0.043**
(0.028) (0.030) (0.010) (0.030) (0.039) (0.020)
fdi —0.122%** 0.042 0.005 0.009 —0.024 0.023
(0.026) (0.027) (0.009) (0.027) (0.036) (0.018)
size 0.079 0.748%** —0.062** 0.783%** 0.919%** 0.258%**
(0.083) (0.083) (0.028) (0.086) (0.113) (0.065)
city 13.150%** —2.368** —0.771%** 1.265** 5.178%** —1.793%**
(0.588) (1.001) (0.197) (0.624) (0.803) (0.444)
ins 0.810%** 0.442%** —0.058%*** 0.668*** 0.455%** 0.402%**
(0.061) (0.079) (0.021) (0.064) (0.084) (0.045)
trans 19.150%** —19.190%*** —1.342 —13.850%** —-1.723 —13.200%**
(4.924) (5.063) (1.652) (5.084) (6.717) (3.454)
enerinno 0.263***
(0.062)
enerstru 0.232
(0.189)
enereffi 0.556%**
(0.032)
constant 2.687%** —1.971%** 1.281%** —1.562%** —3.020%** 0.414*
(0.269) (0.315) (0.090) (0.368) (0.367) (0.211)
Sobel test Z = 3.600 Z = 3.341 Z = 5.562
P =0.000 P =0.001 P = 0.000
Bootstrap testl Z = 3.490 Z = 3.600 Z=4.84
P =0.000 P =0.000 P =0.000
N 300 300 300 300 300 300
R? 0.941 0.654 0.252 0.632 0.657 0.830

condition, and resource dependence reach 9.2225, 0.0006, 0.4377, and
0.0556, respectively, the likelihood ratio (LR) value of the statistical test
becomes zero, as depicted in Fig. 4.

Table 11 presents the results of the threshold regression analysis.
Specifically, @ Column (1) reports the threshold effect results based on
marketization (market) as the adjusting variable. When the marketiza-
tion level exceeds 9.2225, the influence coefficient changes from 0.083
to 1.181, with statistical significance at the 1% level. This aligns with
Liang et al.’s findings [124], suggesting that digitalization has a more
favorable impact in regions with higher levels of marketization. Chen
[79] also noted that mature markets can enhance the role of digitali-
zation in promoting renewable energy development, contributing posi-
tively to low CP. A mature market system provides institutional support
for digitalization dividends, aiding resource allocation and low-carbon
innovation, ultimately yielding a more significant low-carbon eco-
nomic effect. @ Column (2) presents the regression results with envi-
ronmental regulation (regulation) as the threshold variable. When
environmental regulations become more stringent, the coefficient of the
core explanatory variable decreases by 55.072%. This differs from the
perspective of Yang and Liang [125] and supports the “compliance cost
theory” of environmental regulation. Excessive command-based envi-
ronmental regulations can impose innovation costs on enterprises [126]
and hinder the digitalization process, limiting the contribution of ED to
low-carbon economic development. Therefore, the government should
consider adopting a market-oriented and government-coordinated

Table 10
Results of threshold effect test.

approach to balance pollution control investment and digitalization
promotion. ® Column (3) reports the nonlinear relationship when
adjusting for digital infrastructure (diginfra). The result shows that when
diginfra exceeds 0.4377, a 1% increase in ED leads to a 0.205% increase
in CP. This finding is consistent with Chen’s [92] observation that
advanced digital infrastructure is the cornerstone of digitalization,
providing robust technical support for fully releasing the low-carbon
economic impact. @ Column (4) presents regression results with
resource dependence (dependence) as the threshold variable. When
resource dependence is less than 0.0556, the influence coefficient of ED
on CP is 0.176, significant at the 0.01 level. However, the effect coef-
ficient is no longer statistically significant when dependence surpasses
the threshold value. The paper suggests that regions with high resource
dependence tend to adopt a rigid and extensive development approach,
squeezing high-end factors such as technology and human capital. This
limits the carbon reduction impact of ED in these regions.

5.4. Results of spatial effects

5.4.1. Analysis of spatial correlation

This study uses the Moran index to conduct a spatial correlation test.
Table 12 displays the global Moran index based on the economic
geographic distance weight matrix. Both low-carbon economic devel-
opment and ED exhibit a significant positive spatial correlation. How-
ever, it is worth noting that the Moran index varies, suggesting that

Threshold variable (Threshold value) Threshold test F value P value BS times Critical value
10% 5% 1%

market Single threshold 36.440 0.047 300 29.197 36.310 60.478

(9.2225) Double threshold 20.790 0.243 300 31.443 38.932 56.379
regulation Single threshold 26.820 0.023 300 19.225 23.293 30.974

(0.0006) Double threshold 4.200 0.740 300 19.797 25.767 33.617
diginfra Single threshold 69.820 0.000 300 24.355 31.430 52.964

(0.4377) Double threshold 11.960 0.343 300 23.523 34.887 54.510
dependence Single threshold 109.680 0.003 300 40.142 51.981 98.846
(0.0556) Double threshold 16.860 0.487 300 40.354 57.820 78.173
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Fig. 4. Likelihood ratio function graph of the threshold variables: market (a), regulation (b), diginfra (c), and dependence(d).

spatial distribution patterns substantially influence both variables. Fig. 5
illustrates that most data points are clustered in the first and third
quadrants, indicating a “high-high” aggregation pattern and “low-low”
aggregation for both variables.

Furthermore, we applied the spatial Markov chain model to inves-
tigate the spatio-temporal correlation of regional CP. This analysis
categorized CP into three types: 1, 2, and 3, representing low, medium,
and high CP, respectively. Table 13 presents the transition probability
matrix for both traditional and spatial Markov models. Under the
traditional Markov analysis, the following observations can be made: @
The diagonal probability is greater than the non-diagonal values,
exceeding 75%, indicating strong stability in regional carbon perfor-
mance during the study period. In contrast, the non-diagonal probability
values are smaller, with the highest value at 15.493%. This suggests that
the spatial transfer of carbon performance is a gradual process that re-
quires coordinated efforts in terms of technology and policy. @ The
probability values at the two diagonal corners are 94.203% and
98.361%, significantly higher than the 84.507% in the middle of the
matrix. This pattern indicates a “Matthew effect” in the distribution of
CP over successive years. ® By comparing the mean of non-diagonal
probabilities, it is evident that the probability of downward transfer in
interregional CP (1.639%) is significantly lower than the probability of
upward transfer (10.645%). This signifies a positive trend in China’s
low-carbon transformation.

Notable changes in probability values are observed upon comparing
the spatial Markov chain with the traditional Markov chain, under-
scoring the critical role of neighborhood states in CP. The statistical test
shows df = 3x (3—1)% = 12, @ = 0.005, Q, = 33.562 > y%(12) =
28.300. This result rejects the null hypothesis that regional CP types are
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independent. Therefore, we conclude that regional CP types exhibit
significant spatial correlation with neighboring states. ® Neighborhood
State Analysis: When the neighborhood state is categorized as type 3, the
probability of regional carbon performance transfer is the highest
(11.111%) and lowest (4.061%) when the neighborhood is classified as
type 1. This suggests that regional CP exhibits spatial correlation, with
low-carbon neighborhoods more likely to contribute to “carbon
improvement” within the region, while high-carbon neighborhoods tend
to have a “carbon locking” effect. @ Initial State Analysis: For initial
states 1, 2, and 3, the average probability of regions maintaining their
original carbon performance type is 88.437%, 86.917%, and 98.889%,
respectively. Compared to the traditional Markov analysis, regions with
an initial state of type 1 experience a noticeable decrease of 5.766%.
This indicates that regions with high CP display less volatility in low-
carbon development than other regions. ® Transition Probability
Analysis: On one hand, as the neighborhood state transitions from 1 to 3,
the upward transfer probability of regional states gradually increases,
while the downward transfer probability gradually decreases, exhibiting
a “club convergence” phenomenon. On the other hand, when the
neighborhood is type 1, the probability of the initial region maintaining
the same CP type is 96.907%, and when the neighborhood is type 3, the
probability is 1. These values are higher than those observed in the
traditional Markov analysis (94.203% and 98.361%). This reinforces the
“Matthew effect.” @ Analysis of the Number of Regions: When the
neighborhood state is 3, 24 regions (nearly 50%) exhibit low-carbon
characteristics during the period t. Conversely, when the neighbor-
hood state is 1, high-carbon regions account for 84.348%. In both cases,
the number of regions with the same CP type exceeds 50%, indicating a
collaborative pattern in regional CP levels.
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Table 11
Result of the threshold model.
Variable (€D] ) 3) (€3]
market regulation diginfra dependence
enerdig (market < 0.083%**
9.2225) (0.028)
enerdig (market > 0.181%**
9.2225) (0.030)
enerdig (regulation < 0.207%**
0.0006) (0.034)
enerdig (regulation > 0.093***
0.0006) (0.028)
enerdig (diginfra < 0.079%**
0.4377) (0.027)
enerdig (diginfra > 0.205%**
0.4377) (0.029)
enerdig 0.176%**
(dependence < (0.026)
0.0556)
enerdig 0.012
(dependence > (0.027)
0.0556)
fdi 0.010 —0.013 0.043* —0.023
(0.025) (0.026) (0.025) (0.023)
size 0.672%** 0.731%%* 0.597%%* 0.567***
(0.082) (0.082) (0.080) (0.076)
city 1.066* 1.036* 0.750 0.808
(0.573) (0.582) (0.547) (0.519)
ins 0.617*** 0.629%** 0.621%** 0.606%***
(0.060) (0.061) (0.057) (0.054)
trans —16.700%** —13.400%*** —13.810%** —10.650**
(4.812) (4.874) (4.561) (4.352)
constant —1.052%** —1.114%** —0.875%** —0.767%**
(0.264) (0.268) (0.254) (0.242)
N 300 300 300 300
R? 0.672 0.661 0.703 0.732

5.4.2. Analysis of spatial effects

Based on a series of statistical tests, including LM, Wald test, LR, and
Hausman, we have established the SDM, with the results presented in
Table 14. The coefficients of p in the three fixed effects SDMs are
significantly positive, providing further evidence of the spatial correla-
tion of CP. Given the significance of the variables and the LR test results
[127], our focus will be on the outcomes of the double fixed-effect SDM,
as illustrated in column (3). In this model, it is evident that ED positively
impacts CP, with a coefficient of 0.200 for Wxenerdig. This finding in-
dicates that ED possesses spillover effects on neighboring regions,
thereby offering preliminary support for hypothesis 4 outlined in this
paper.

It is important to note that due to the spatial rebound effect among
variables, fully capturing the spatial correlation requires examining the
influence of variables and their spatial interaction terms and considering
various spatial influences of ED. To achieve this, we have applied the
dynamic SDM, and the results are presented in Table 15. @ Regarding
the spatial direct effect, ED significantly and positively impacts regional
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CP. Importantly, there is no significant change in the short and long-
term direct effects. Specifically, for every 1% increase in ED, the CP of
the internal region increases by 0.066% during the short period and
0.051% in the long run. @ Concerning the spatial spillover effect, ED
demonstrates a favorable spillover effect on the CP of external regions,
providing strong evidence supporting hypothesis 4 outlined in this
paper. This spillover effect is more pronounced during the short period,
with elastic coefficients of 0.232 and 0.188, respectively. The possible
reason for this is that it is easier to establish collaborative digital stra-
tegies between regions in the long run, which may weaken the spillover
effect caused by peer effects and, consequently, reduce the long-term
spatial spillover effect. ® Regarding the spatial total effect, it shows a
significant positive impact in both the long and short term due to the
accumulation of positive direct and spillover spatial effects.

5.5. Robustness test

In terms of robustness testing, this study conducts four different es-
timations to assess the robustness of the results. The outcomes of these
tests are presented in Table 16. The four robustness tests involve
replacing the core independent variable, substituting the dependent
variable, reducing the sample period, and addressing extreme values.
The results are as follows: @ Replace the core independent variable. In
column (1), the core independent variable ED is replaced by the pro-
portion of intangible assets in energy enterprises (digreplace), which can
serve as a proxy for the digitalization degree of enterprises. The results
demonstrate that the proportion of intangible assets in energy enter-
prises is positively associated with CP, reaffirming the reliability of the
previous conclusions.; @ Replace the dependent variable. In column (2),
per capita carbon emissions are introduced as a reverse substitute var-
iable for low-carbon economic development, following Guo et al. [43].
The analysis reveals that ED effectively reduces per capita carbon
emissions, further supporting the earlier findings: ® Reduce sample
period. Column (3) presents the estimation results after excluding the
initial and final periods of the research sample, retaining data from 2013
to 2020. The coefficients and significance levels of the variables remain
consistent with the previous findings, demonstrating the robustness of
the results over this reduced sample period; @ Eliminate the extreme
value. Inspired by Luo et al. [47], 5% extreme values for all variables are
removed to mitigate the influence of outliers. This approach enhances
the credibility of the findings, as shown in column (4).

5.6. Discussion

This study seeks to investigate the multifaceted effects of energy
digitalization on CP. The objective is to furnish empirical evidence and
policy guidance for transforming a digitally-driven energy system,
underscoring its potential for low-carbon development.

On the one hand, paralleling the research paradigms in extant
literature [47,96], the multidimensional impact of digitalization on
low-carbon development has been comprehensively examined.

Table 12

Results of Moran’s L.
Year cp Year enerdig

I Z E() sd(I) I Z E() sd(I)

2011-2012 2.239 —0.034 0.093 2012 0.605 —0.034 0.121
2012-2013 2.151 —0.034 0.094 2013 1.308 —0.034 0.123
2013-2014 1.908 —0.034 0.091 2014 1.138 —0.034 0.124
2014-2015 2.102 —0.034 0.092 2015 2.357 —0.034 0.123
2015-2016 2.037 —0.034 0.091 2016 3.163 —0.034 0.122
2016-2017 2.05 —0.034 0.087 2017 1.99 —0.034 0.124
2017-2018 2.065 —0.034 0.085 2018 1.977 —0.034 0.125
2018-2019 1.966 —0.034 0.085 2019 2.517 —0.034 0.124
2019-2020 1.797 —0.034 0.084 2020 2.029 —0.034 0.124
2020-2021 1.900 —0.034 0.084 2021 1.522 —0.034 0.121
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Table 13
Results of spatial Markov model.
Markov Neighborhood Type t\t+1 1 2 3 n
Type
Traditional ~ \ 1 0.942 0.058 0.000 138
Markov 2 0.000 0.845 0.155 71
3 0.000 0.016 0.984 61
Spatial 1 1 0.969 0.031 0.000 97
Markov 2 0.000 0.909 0.091 11
3 0.000 0.000 1.000 7
2 1 0.906 0.094 0.000 32
2 0.000 0.810 0.190 42
3 0.000 0.033 0.967 30
3 1 0.778 0.222 0.000 9
2 0.000 0.889 0.111 18
3 0.000 0.000 1.000 24

Empirical results based on microscopic data validate digitalization’s
low-carbon potential and regional heterogeneity’s impact [95].
Concurrently, our findings suggest that energy technology innovation
acts as a positive transmission mechanism, furnishing robust evidence
for its current intermediary role in technology innovation [62]. Addi-
tionally, our analysis reveals that CP exhibits spatial correlation char-
acteristics. Through spatial transmission, digitalization can exert a
positive spatial influence on regional external CP levels, consistent with
the study [128], laying a theoretical foundation for further exploration
of digitalization’s spatial effects.

On the other hand, our research has yielded several unexpected in-
sights and novel contributions. Firstly, this represents the inaugural
quantitative investigation into the digitalization of the energy sector,
augmenting the body of theoretical research on industrial digitalization,
building upon previous studies focused on overall industrial [50],
manufacturing sector digitalization [129] and agriculture [130].
Notably, our study does not corroborate the inverted U-shaped rela-
tionship between energy digitalization and CP, diverging from the
findings of previous studies of Zhao et al. [104] and Cheng et al. [55].
This could be attributed to the dual considerations of carbon emissions
and economic benefits, where energy digitalization potentially re-
structures factor compositions and deepens industrial organization
forms, propelling the low-carbon transition of the industry and serving
as a pivotal point for economies to surpass the Environmental Kuznets
Curve (EKC) inflection point. Secondly, the mediating regression results
validate the positive transmission mechanism of energy structure and
energy utilization efficiency, thereby enriching the mechanism research
on digital carbon reduction and offering new directions for govern-
mental policy formulation. Thirdly, building upon existing studies on
the regulatory roles of marketization [52] and environmental regulation
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Table 14
Results SDM model regression.
Variable @ 2 3
ind time both
enerdig 0.083*** 0.084** 0.093***
(0.021) (0.036) (0.021)
fdi 0.058%** 0.092%** 0.046**
(0.019) (0.021) (0.019)
size 0.204%** —0.279%** 0.143**
(0.064) (0.079) (0.067)
city —3.271%** —2.135%** —3.659%***
(0.970) (0.573) (0.973)
ins 0.577%** 0.767*** 0.544%***
(0.066) (0.045) (0.070)
trans 1.550%** 1.721%%* 1.630%**
(0.102) (0.180) (0.104)
Wxenerdig 0.138%*** 0.045 0.200%**
(0.040) (0.088) (0.052)
Wxfdi 0.095* 0.222%** —0.037
(0.049) (0.086) (0.064)
Wsize 0.072 0.764%** -0.277
(0.129) (0.230) (0.192)
Wxcity —18.160*** —2.299 —20.400%**
(2.230) (1.944) (2.516)
Wxins 0.391%** —0.223 0.331
(0.144) (0.180) (0.234)
Wxtrans 1.727%** —1.362%** 2.417%**
(0.306) (0.440) (0.361)
P —0.347%** 0.201** —0.453%**
(0.105) (0.098) (0.106)
o2 0.018%** 0.121%** 0.017***
(0.002) (0.010) (0.001)
N 300 300 300
Log-Likelihood 172.498 —109.645 182.333
LR-ind 19.670%**
LR-time 583.960%**

[93], our research further probes the heterogeneity in external infra-
structure and energy dependence in digitalization, addressing the cur-
rent research gap on the nonlinear relationship between digitalization
and low-carbon development. This provides theoretical underpinnings
for the formulation of region-specific energy digitalization policy.
Lastly, the spatial Markov chain analysis reveals the presence of
“Matthew effect” and “club-driven” phenomena in the spatio-temporal
distribution of China’s regional CP. This enriches the understanding of
CP’s spatial and temporal distribution characteristics, extending beyond
the spatial correlations established by the Moran index [47,55]. It is
noteworthy that the short-term spatial impact of energy digitalization is
more pronounced compared to long-term spatial effects. This finding
supplements existing research on the spatial implications of
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Table 15
The decomposition of spatial effect.
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Variable Short-term spatial effects Long-term spatial effects
Direct Spillover Total Direct Spillover Total
enerdig 0.066*** 0.232%** 0.298%** 0.051%* 0.188*** 0.238*+
(0.022) (0.051) (0.058) (0.024) (0.042) (0.044)
Control variables Control
p 0.220*
(0.132)
o2 0.016%**
(0.001)
Log- Likelihood —4404.537
6.2. Policy implications
Table 16
Results of the robustness test. . .o L -
Given the above findings, we propose policy implications from three
Variable (€] (@) 3) (&) levels.
X. replace Y. replace Timecut Winsor On a national level, there is an urgent need to advance the strategy of
digreplace 95.720% ED, accelerate the dlgltalhlzatlon of energy .sectors, gnd construct new
(15.140) power systems characterized by digitalization to drive the clean and
enerdig —0.034%#* 0.109%** 0.119%** intelligent development of energy systems. Firstly, it is essential to
(0.007) (0.032) (0.029) bolster digital infrastructure construction within the energy industry,
fdi 0.016 ~0.014%% 0.034 0.008 roviding the necessary hardware support for ED. This entails imple-
(0.027) (0.004) (0.035) (0.026) providing the necessary hard supp : 1S 1mp
size 0.760%** 0.093%%* 0.632+* 0.753%%% menting specific actions in critical areas such as intelligent
(0.088) (0.015) (0.093) (0.084) manufacturing, the energy Internet, smart grids, and energy big data.
city 0.912 0.305*** 0.515 1.218** Secondly, guided by the “dual carbon” goal, it is necessary to promote
. (0.668) (0.075) (0.763) (0.606) integration innovation of digital and energy technology. This includes
ins 0.721%** —0.050%*** 0.625%*+ 0.619%** fostering th id devel t of dicitalization i h
(0.062) (0.009) (0.072) (0.063) ostering the rapid development o 1glta ization in areas such as energy
trans —8.800* —0.420 —11.700%* —14.230%%* conservation, environmental protection, new energy, energy storage,
(5.151) (0.383) (5.774) (5.138) distributed energy, and more. These efforts will enhance the develop-
constant —1.150%** 0.017 —0.856** —1.300%* ment quality and efficiency of the energy industry. Macro-level strate-
N ;%.310) 2%836) ;(1‘5’45) (3%'374) gies can be explored in constructing renewable energy power stations
R 0.614 0.586 0.590 0.632 supported by data and processes, optimizing carbon emission manage-

digitalization and offers significant theoretical contributions to the
strategies for inter-regional digital transformation collaboration.

6. Conclusion and implications
6.1. Conclusions

The energy sector is undergoing a transformative phase marked by a
burgeoning digital technology revolution and industrial metamorphosis,
establishing a robust impetus for low-carbon development. Utilizing
provincial data from China spanning 2012 to 2021, this study strives to
unravel the intricate interplay between ED and developing a low-carbon
economy through theoretical analysis and empirical testing. Our find-
ings culminate in four pivotal insights: @ Energy digitalization mark-
edly enhances CP, a valid conclusion even after conducting endogeneity
and robustness assessments. Additionally, heterogeneity analyses reveal
that this positive effect is more pronounced in China’s eastern regions
and the years after 2015. @ Energy digitalization indirectly influences
CP by innovating energy technology, refining the clean energy structure,
and boosting energy utilization efficiency. Notably, improvements in
energy utilization efficiency emerge as the most influential factor. ®
The relationship between ED and CP is nonlinear and is influenced by
external environmental factors. The existence of mature markets, suit-
able environmental regulations, advanced digital infrastructure, and
reduced dependence on resources tend to foster a more favorable
environment for this relationship. @ Both ED and CP exhibit distinct
spatial aggregation characteristics. Energy digitalization not only bol-
sters CP within its region but also generates positive spillover effects on
CP in neighboring regions, with these influences being more significant
in the short term.
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ment in conventional power supply through digital means, and
enhancing the intelligent optimization of multi-level power system op-
erations that support renewable energy.

At the regional level, governments should focus on institutional
development to create a supportive regulatory environment for ED.
Regional governments should establish an inclusive, differentiated, and
precise policy framework based on environmental regulation intensity,
market competition levels, digital infrastructure construction, and car-
bon emission reduction goals. Instead of excessive government inter-
vention, the emphasis should be on promoting market-oriented reforms,
reducing direct resource allocation, and avoiding administrative mo-
nopolies to foster a conducive institutional environment for ED.
Furthermore, considering the spatial effects of ED on CP, inter-regional
governments should collaborate in building digital networks to harness
the regional benefits of digitalization effectively. Breaking down digital
barriers, establishing inter-regional energy networks, and highlighting
the relative strengths of different zones, especially between the eastern
and northeastern regions, is essential. Given the disparities in digital
infrastructure and resource endowments between the eastern and cen-
tral regions, the central and western regions may require additional
support to realize the full potential of digital transformation’s carbon
emission reduction. Leveraging the financial and technological advan-
tages of the eastern region while optimizing renewable energy infra-
structure in the central and western regions can enhance the adoption of
clean energy.

At the enterprise level, energy companies, as key players in ED, must
proactively respond to the inevitable digital transformation trend. En-
terprises should actively engage in industry-university-research collab-
oration strategies, strengthen partnerships with universities and energy
research institutes, enhance digital literacy, and bolster digital innova-
tion capabilities. There is a pressing need to invest in research and
development, focusing on applying digital technology throughout the
energy supply chain, for instance, encouraging innovation in smart grid
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and multi-energy complementary technology for transmission and
fostering the development of virtual power plants and electric energy
substitution technology for distribution. Enterprises should also focus on
innovation in energy data and deepen its application. This includes
breakthroughs in critical technologies like resource scheduling, moni-
toring management, in-depth analysis, and the integration of cutting-
edge technologies such as the Internet of Things, artificial intelligence,
blockchain, big data, edge computing, and digital twins with core
business processes. Additionally, energy companies should adapt their
digital strategies, improve their organizational structures and opera-
tional mechanisms, and facilitate the seamless integration of digital
technologies with business strategies and objectives. Developing a
diverse talent pool for ED is crucial. Encouraging employees to enhance
their proficiency in applying digital technology achievements and
fostering technical exchanges and cooperation are essential steps to
realize ED’s low-carbon development benefits fully.

6.3. Limitations and future directions

We have delved deep into the impact of digital transformation on CP,
but it is important to acknowledge certain limitations in our study.
Firstly, the absence of authoritative data on the energy industry and the
exclusion of data on unlisted companies might limit the applicability of
our findings, especially in comparison to developed economies. Sec-
ondly, given the complexity of the issue and the rigorous mathematical
relationships involved, addressing endogeneity in the mediating effect
could have been addressed more effectively. Endogeneity is a well-
recognized challenge in econometrics. Lastly, the lexicon of digital
transformation constructed in this article may require periodic updates
in future research due to the rapid evolution of the digital economy.

In future studies, the research framework developed in this paper can
be extended to different industries, such as the cultural industry, agri-
culture, tourism, or other developing countries. This expansion will
further enrich our understanding of the relationship between digital
transformation and CP in diverse contexts. To mitigate the endogeneity
issues in econometric models, a promising approach involves combining
theoretical analysis and mathematical derivation to establish a robust
mathematical model between the core variables. Additionally, to keep
the research up-to-date, it is advisable to regularly update the keyword
analysis by capturing critical terms from policy texts related to digital
transformation and industrial development planning each year. This will
allow for the continuous expansion of the digital transformation vo-
cabulary in future studies.
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